

A

PROJECT

ON

“Whiz: UPSC Quiz App”

Submitted to

Shiksha Mandal’s
G. S. COLLEGE OF COMMERCE & ECONOMICS, NAGPUR

(AUTONOMOUS)

In the Partial Fulfillment of

B.Com. (Computer Application) Final Year

Submitted by
Syed Arshad Hussain

Mustafa Hussaini

Under the Guidance of

Pravin J. Yadao

Shiksha Mandal’s

G. S. COLLEGE OF COMMERCE & ECONOMICS, NAGPUR

(AUTONOMOUS)

2021-2022

Shiksha Mandal’s

G. S. COLLEGE OF COMMERCE & ECONOMICS,

NAGPUR

(AUTONOMOUS)

(2021 - 2022)

This is to certify that Mr. Syed Arshad Hussain and Mustafa Hussaini has

completed their project on the topic of Whiz Quiz App prescribed by G. S. College

of Commerce & Economics, Nagpur (Autonomous) for B.Com. (Computer

Application) – Semester-VI.

 Date: 07/04/2022

 Place: Nagpur

 Pravin J. Yadao

 Project Guide

External Examiner Internal Examiner

ACKNOWLEDGEMENT

We take this opportunity to express our deep gratitude and whole hearted thanks to

project guide Prof. Pravin Yadao, Coordinator for his guidance throughout this work. We

are very much thankful to him for his constant encouragement, support and kindness.

We are also grateful to our teachers Prof. Rahul Tiwari, Prof. Sushma Gawande, Prof.

Preeti Rangari, Prof. Prajkta Deshpande and Prof. Haresh Naringe for their

encouragement, help and support from time to time. We also wish to express our sincere

thanks to Principal Dr. N. Y. Khandait for providing us wide range of opportunities,

facilities and inspiration to gather professional knowledge and material without which

this project could not have been completed.

 Syed Arshad Hussain

Mustufa Hussaini

Student Names & Signature

Date: 07/04/2022

Place: Nagpur

DECLARATION

We (Syed Arshad Hussain and Mustafa Hussaini) hereby honestly declare that the

work entitled “Whiz Quiz App” submitted by us at G. S. College of Commerce &

Economics, Nagpur (Autonomous) in partial fulfillment of requirement for the award of

B.Com. (Computer Application) degree by Rashtrasant Tukadoji Maharaj, Nagpur

University, Nagpur has not been submitted elsewhere for the award of any degree, during

the academic session 2021-2022. The project has been developed and completed by us

independently under the supervision of the subject teacher and project guide.

Syed Arshad Hussain

Mustufa Hussaini

Student Name & Signature

Date: 07/04/2022

Place: Nagpur

INDEX

SR. NO. PARTICULARS PAGE NO. REMARK SIGNATURE

1 Introduction 1-2

2 Objectives 3-5

3 Preliminary System Analysis 6-17

• Identification of Need
• Preliminary Investigation
• Present System in Use
• Flaws in Present System
• Need of New System
• Feasibility Study
• Project Category

4 Software & Hardware
Requirement Specification

18-19

 5 Detailed System Analysis 19-24

• Data Flow Diagram
• Numbers of Modules and

Process Logic
• Data Structures and Tables
• Entity-Relationship Diagram

 6 System Design 25-53

• Form Design
• Source Code
• Input Screen & Output Screen

 7 Testing & Validation Checks 54-55

 8 System Security Measures 56-57

 9 Implementation, Evaluation and
Maintenance

58-59

 10 Future Scope of the project 60-61

11 Conclusion 62-63

 12 Bibliography & References

64-65

1

INTRODUCTION

2

INTRODUCTION

In today’s world, Smart phones have changed our lives and have become an

indispensable part of our lives because of its speciality to specify our routine

work and thereby saving our time and educational competitions are also

high. So, the ‘Whiz Quiz App’ is developed to help students to judge and

practicing their educational knowledge about the UPSC Exam through MCQ

based pattern. Whiz Quiz App provides quiz on general knowledge topics

where students can give MCQ’s test and also get to know the scores. This

Whiz Quiz App includes quiz on UPSC which cover various topics such as

Sociology, History, Indian Economy, Geography, Current Affair, Indian

Polity, Science & Technology and Environment etc.

Preparing for the Civil Services is an enriching and empowering experience.

During IAS Preparation, candidates are exposed to a variety of topics and

viewpoints adding to their knowledge and experience. An aspirant preparing

for the UPSC Exam is expected to develop a large knowledge base on

traditional subjects such as history, geography, languages and economics as

well as dynamic subjects such as polity, social issues, management etc. The

nature of the job of a Government Officer, such as the variety of work, the

ability to effect lasting positive changes and the perks of service make the

Civil Services is one of the most coveted careers in the country.

Development of this app is mainly required by students and learners to

prepare themselves for UPSC examinations directly through smartphones

and tablets in hands. One of the major goal of our project is to facilitate best

quiz app to judge their knowledge and educational improvements about

UPSC Examination. The main goal is to enable user to practice for

subjective tests.

The students must register his/her name along with all information required

and enter the email id and password for the login process. Using this email

id and password to log in to the Whiz Quiz App. As soon as the student

chooses the quiz topic, each topic contain 10 questions each, the questions

with four choices will be shown. The students must choose any option as the

answer. After submitting the answer if it is turn into Green color it means

your answer is right and if it is turn into red you give wrong answer after

completing the quiz you know the score .

3

OBJECTIVE

4

OBJECTIVE

The Whiz UPSC App offer UPSC aspirants the flexibility to study whenever

they have free time and access to a smartphone. Generally, it is advisable to

keep only a single app for IAS preparation as having multiple apps becomes

distracting and slows down the preparation. With this in mind, IAS aspirants

should choose only the best from a plethora of options available. The

objective of this app are:

 This app is designed to help a student prepare for competitive

examinations like UPSC

 The main objective of this Quiz System Project is to facilitate a user

friendly environment to reduce the manual effort. The purpose of the

system is to develop Quiz System., used to test the Domain

knowledge of the students.

 To provide an interface through which student can solve quiz.

 The app should be easy to use and have a clean interface so that topics

and study material can be found easily.

 The questions will be display after choosing topic.

 The UPSC app should also feature regular quizzes from various topics

and also options for full-scale tests so that aspirants can test their

knowledge on a regular basis and identify their strong and weak

points.

5

 The main objective of this Quiz System Project is to facilitate a user

friendly environment to reduce the manual effort. The purpose of the

system is to develop Quiz System for aspirant, used to test the

Domain knowledge of the students.

 Included Login and Sign Up pages, User can login with email address

and password.

 The timer is the most exciting feature where the user can solve

questions in a given time.

6

PRELIMINARY SYSTEM ANALYSIS

7

PRELIMINARY SYSTEM ANALYSIS

The main objectives of preliminary analysis is to identify the customer's

needs, evaluate system concept for feasibility, perform economic and

technical analysis, perform cost benefit analysis and create system definition

that forms the foundation for all subsequent IT works. There should be

enough expertise available for hardware and software for doing analysis.

While performing analysis, the following questions arise.

How much time should be spent on it? As such, there are no rules or

formulas available to decide on this. However, size, complexity, application

field, end-use, contractual obligation are few parameters on which it should

be decided.

• Other major question that arises is who should do it. Well an experienced

well-trained analyst should do it. For large project, there can be an analysis

team.

After the preliminary analysis, the analyst should report the findings to

management, with recommendations outlining the acceptance or rejection of

the proposal.

Preliminary Investigation:

Preliminary Investigation basically refers to the collection of information

that guides the management of an organization to evaluate the merits and

demerits of the project request and make an informed judgment about the

feasibility of the proposed system. This sort of investigation provides us

with a through picture of the kind of software and hardware requirements

which are most feasible for the system, plus the environment in which the

entire project has to be installed and made operational. The preliminary-

investigation phase sets the stage for gathering information about the current

problem and the existing information system. This information is then used

in studying the feasibility of possible information systems solutions.

Present system in use:

Traditional exams will die out within a decade. In a world that seems

increasingly dominated by technology and computers, Tests in India

continue to be primarily paper - and pencil - based. Online testing accounts

for only around 20 percent of the total testing done in India.

8

We want to carefully examine the difference between online and pen and -

paper quiz test. Further since the future seems to be strongly swaying

towards online testing.

If we go to see the earlier standards of having an exam in a pen and paper

format, there was no choice but to have it that way since the technology was

not as advanced as to carry an online test. But this is not the scene today.

Preparing for the Civil Services is an enriching and empowering experience.

During UPSC Preparation, candidates are exposed to a variety of topics and

viewpoints adding to their knowledge and experience. An aspirant preparing

for the UPSC Exam is expected to develop a large knowledge base on

traditional subjects such as history, geography, languages and economics as

well as dynamic subjects such as polity, social issues, management etc. The

nature of the job of a Government Officer, such as the variety of work, the

ability to effect lasting positive changes and the perks of service make the

Civil Services is one of the most coveted careers in the country.

Preparation for the exam should be started early due to the high competition

and vastness of the UPSC Syllabus. Technology has made it easier to master

any topic through online platforms such as websites and smartphone apps.

We focus on UPSC Exam Preparation through smartphone apps.

Flaws in present system:

As looking to the present system due to outdated version flaws is occured in

present system.

1) Lack of security: As security facility is not available so unsecure

app can pose a problem there will be chances of misuse and also a

user will be hesitate to visit system.

2) User Interface: As present system is not too good visitors will

judge how your app looks so new user interface is required.

3) Difficulty: To finding the questions to reviewed.

4) No changes allowed: Once an answer is marked. Thus, higher

chances of losing important marks.

9

5) Slow loading Time: Due to database slow loading time can

absolutely kill the app experience of visitors.

6) Basic Questions: The quality of content in an UPSC preparation is

low level, the needs of aspirants and the structure of the UPSC

Exam is to be professional.

Needs of new system:

This app is designed in such ways which help in overcome all the flaws

which is in current system .The present system is outdated and also security

in not provided by current system so there will be need of new system.

 Techniques and coding: If app is developed several year ago it

probably has a lot of unnecessary java code may slowing down app

speed so modern techniques such as XML is help for app.

 Content: The first impression of our app will be over all layout but

reader is visiting our app because they looking for useful and updated

information.

 Reliable Platform: All quiz material provided was checked. What we

need? Should provide you exactly.

 All in one: Now we need single platform which will provide all types

of quizzes as well as user friendly platform.

 Flextime: You don’t need a classroom environment for testing.

Learners can solve quiz wherever they are, on their own schedule.

Feasibility Study

A feasibility study is an analysis that takes all of a project's relevant factors

into account—including economic, technical, legal, and scheduling

considerations—to ascertain the likelihood of completing the project

successfully. A feasibility study is part of the initial design stage of any

project/plan. It is conducted in order to objectively uncover the strength and

weaknesses of a proposed project or an existing business. It can help to

identify and assess the opportunities and threats present in the natural

10

environment, the resources required for the project, and the prospects for

success. A feasibility study is an evaluation and analysis of a project or

system that somebody has proposed. We also call it a feasibility analysis.

Feasibility Study in Software Engineering is a study to evaluate feasibility of

proposed project or system. Feasibility study is one of stage among

important four stages of Software Project Management Process. As name

suggests feasibility study is the feasibility analysis or it is a measure of the

software product in terms of how much beneficial product development will

be for the organization in a practical point of view. Feasibility study is

carried out based on many purposes to analyze whether software product

will be right in terms of development, implantation, contribution of project

to the organization etc.

A feasibility study is a high-level capsule version of the entire System

analysis and Design Process. The study begins by classifying the problem

definition. Feasibility is to determine if it’s worth doing. Once an acceptance

problem definition has been generated, the analyst develops a logical model

of the system. A search for alternatives is analysed carefully.

What are the user’s demonstrable needs?

The user wants a web-based system, which will reduce the bulk of

paperwork, provide ease of work, flexibility, fast result.

How can the problem be redefined?

We proposed our perception of the system, in accordance with the problems

of existing system by making a full layout of the system on paper. We tallied

the problems and needs by existing system and requirements. We were

further updating in the layout in the basis of redefined the problems. In

feasibility study phase we had undergone through various steps, which are

described as under: How feasible is the system proposed? This was analysed

by comparing the following factors with both the existing system and

proposed system.

Cost: The cost required in the proposed system is comparatively less to the

existing system.

11

Effort: Compared to the existing system the proposed system will provide a

better working environment in which there will be ease of work and the

effort required will be comparatively less than the existing system.

Time: The time required generating a report or for doing any other work

will be comparatively very less than in the existing system. Record finding

and updating will take less time than the existing system.

Types of Feasibility Study:

The feasibility study mainly concentrates on bellow five mentioned areas.

Among these Economic Feasibility Study is most important part of the

feasibility analysis and Legal Feasibility Study is less considered feasibility

analysis.

Technical Feasibility –

In Technical Feasibility current resources both hardware software along with

required technology are analyzed/assessed to develop project. This technical

feasibility study gives report whether there exists correct required resources

and technologies which will be used for project development. Along with

this, feasibility study also analyses technical skills and capabilities of

technical team, existing technology can be used or not, maintenance and up-

gradation is easy or not for chosen technology etc.

Operational Feasibility –

In Operational Feasibility degree of providing service to requirements is

analyzed along with how much easy product will be to operate and

maintenance after deployment. Along with this other operational scopes are

determining usability of product, Determining suggested solution by

software development team is acceptable or not etc.

Economic Feasibility –

In Economic Feasibility study cost and benefit of the project is analyzed.

Means under this feasibility study a detail analysis is carried out what will be

cost of the project for development which includes all required cost for final

development like hardware and software resource required, design and

development cost and operational cost and so on. After that it is analyzed

whether project will be beneficial in terms of finance for organization or not.

12

Legal Feasibility –

In Legal Feasibility study project is analyzed in legality point of view. This

includes analyzing barriers of legal implementation o project, data protection

acts or social media laws, project certificate, license, copyright etc. Overall it

can be said that Legal Feasibility Study is study to know if proposed project

conform legal and ethical requirements.

Social feasibility -

Social feasibility is a detailed study on how one interacts with others within

a system or an organization. Social impact analysis is an exercise aimed at

identifying and analyzing such impacts in order to understand the scale and

reach of the project’s social impacts.

13

Project Category:

In this project “Whiz Quiz App” we use Android Java programing language

and Firebase as database and for styling of Application we use XML.

Java:

25 years on, Java still remains the most popular programming language

among developers, despite all the new entrants that made their mark. In a

world where new technology quickly replaces old ones, none has been able

to replace Java.

One of the biggest reasons why Java is the first choice of all app developers

is because it is very easy to learn and get started with, and also offers wide-

reaching community support which is an added help to new developers.

Don’t let the ease of learning, Java is a power-packed programming

language for mobile apps. Some of the best Android apps have been

developed using Java, including Spotify, Twitter and of course, the Android

Operating System.

With the Android OS itself being developed in Java, you will be able to

easily develop all android apps once you master Java. Some of the best

features of Java include:

 The simple, easy to understand syntax of Java is much more readable

than Python and other coding languages used for mobile app

development.

 Being an Object-Oriented programming language, it handles the

complexity of real-world applications better.

 With its rich API, Java allows you to integrate much more into your

app.

 Java’s rich community support helps new developers truly hone their

skills and never be stuck without any form of help. You can expect to

find answers quickly and in adequate detail.

14

 Another thing you’ll love about Java is that it is a strongly typed

language. This means that it will catch many mistakes you make as a

newbie.

 To sum up, Java is one of the best programming languages for app

development, especially if you’re starting out in the field of app

development and need an android programming language that delivers

on all counts.

Firebase:

Firebase is basically a Google-backed app development platform which was

initially developed by James Tamplin and Andrew Lee in 2011. It was

officially launched in 2012, and right after the two years of launch, Google

acquired this platform. In the beginning, Firebase was only designed as a

Realtime database but after its acquisition by Google, it started giving more

services.

In simple words, Firebase is a software development platform that helps in

building web and mobile applications with its 18 services. These 18 services

of this BaaS solution also include purposeful APIs and four beta products. In

addition, it is compatible to integrate with Android, web, iOS, and Unity

setups.

Features:

 Firebase manages real-time data in the database. So, it easily and

quickly exchanges the data to and from the database. Hence, for

developing mobile apps such as live streaming, chat messaging, etc.,

we can use Firebase.

 Firebase allows syncing real-time data across all devices - iOS,

Android, and Web - without refreshing the screen.

 Firebase provides integration to Google Advertising, AdMob, Data

Studio, BigQuery DoubleClick, Play Store, and Slack to develop our

apps with efficient and accurate management and maintenance.

 Everything from databases, analytics to crash reports are included in

Firebase. So, the app development team can stay focused on

improving the user experience.

15

 Firebase applications can be deployed over a secured connection to

the firebase server.

 Firebase offers a simple control dashboard.

 It offers a number of useful services to choose from.

Google Firebase is Google-backed application development software which

allows developers to develop Android, IOS, and Web apps. For reporting

and fixing app crashes, tracking analytics, creating marketing and product

experiments, firebase provides several tools.

16

Firebase has three main services, i.e., a real-time database, user

authentication, and hosting. We can use these services with the help of the

Firebase iOS SDK to create apps without writing any server code.

Realtime Database:

The Firebase Realtime Database is a cloud-hosted database in which data is

stored as JSON. The data is synchronized in real-time to every connected

client. All of our clients share one Realtime Database instances and

automatically receive updates with the newest data, when we build cross-

platform applications with our iOS, and JavaScript SDKs.

The Firebase Realtime Database is a NoSQL database from which we can

store and sync the data between our users in real-time. It is a big JSON

object which the developers can manage in real-time. By using a single API,

the Firebase database provides the application with the current value of the

data and updates to that data. Real-time syncing makes it easy for our users

to access their data from any device, be it web or mobile.

Firestore Database:

We have two options with Firebase, i.e., Firebase Real-time Database, and

Cloud Firestore. Cloud Firestore is newer, but it is not replacing the Firebase

Real-time Database. Cloud Firestore is a flexible as well as scalable NoSQL

cloud database. It is used to store and sync data for client and server-side

development. It is used for mobile, web, and server development from

Google Cloud Platform and Firebase. Like the Firebase Real-time Database,

it keeps syncing our data via real-time listeners to the client app. It provides

offline support for mobile and web so we can create responsive apps that

work regardless of network latency or Internet connectivity.

Cloud Firestore also provides seamless integration with Google Cloud

Platform products and other Firebase, including cloud functions.

17

How does it work?

Cloud Firestore, a cloud-hosted, NoSQL database, is accessed directly

through the native SDK by our iOS, Android, and web apps. In addition to

REST and RPC APIs, Cloud Firestore is also available in native Node.js,

Java, Python, and Go SDKs.

After Cloud Firestore's NoSQL data model, we can store data in documents

that have field mappings for values. The documents are stored in a container

called collections. These containers are used to organize our data and create

queries. There are different data types, from simple string and numbers to

complex nested objects, supported by documents. We can also create sub-

collection within a document and create a hierarchical data structure that

scales to the growth of our database. The Firestore data model supports

whatever data structure works best for our app.

Additionally, the query in Cloud Firestore is expressive, efficient, and

flexible. The shallow queries are created to retrieve data at the document

level without the need to retrieve the entire collection or any nested

subdivision. Add sorting, filtering, and limits for our queries or cursors to

18

index the result. Add a real-time listener to our app for keeping the data

running. Every time it is updated without recovering our entire database.

Adding real-time listeners to our app informs us with a data snapshot

whenever our customer apps are changing data, only getting new changes.

For protecting our data access in Cloud Firestore, Firebase authentication,

and Cloud Firestore security rules are used for Identity and Access

Management (IAM).

XML:

XML stands for Extensible Markup Language. XML is a markup language

much like HTML used to describe data. It is derived from Standard

Generalized Markup Language(SMGL). Basically, the XML tags are not

predefined in XML. We need to implement and define the tags in XML.

XML tags define the data and used to store and organize data. It’s easily

scalable and simple to develop. In Android, the XML is used to implement

UI-related data, and it’s a lightweight markup language that doesn’t make

layout heavy. XML only contains tags, while implementing they need to be

just invoked.

19

SOFTWARE AND HARDWARE

REQUIREMENTS SPECIFICATIONS

20

SOFTWARE AND HARDWARE REQUIREMENTS

SPECIFICATIONS

Every application needs the software in which it has to be executed and a

hardware the application is going to perform its function. Some application

cannot run on every platforms and some applications needs some specific

requirement in the software or in hardware to get operated. Lets take an

example of the applications which cannot be run on every platforms like

windows, android, linux, etc. Applications made in Android Studio is only

supported for the windows, one cannot access this applications from the

mobile phones, etc. So, here are some hardware and software specifications

which are mandatory for the application to get operated.

HARDWARE:

Hardware is a term that refers to all the physical parts that make up a

computer. The internal hardware devices that make up the computer.

Various devices which are essentials to form a hardware is called as

components. Following are the hardware specifications that is required to

develop this project is as follows:

64-bit Microsoft® Windows® 8/10.

x86/64 CPU architecture; 2nd generation Intel Core or newer, or AMD CPU

with support for a Windows Hypervisor.

8 GB RAM or more.

8 GB of available disk space minimum (IDE + Android SDK + Android

Emulator)

1280 x 800 minimum screen resolution.

SOFTWARE:

The system software layer interfaces with the operating system, which in

turn communicates with the hardware.

 Internet Explorer.

 Mozilla Firefox.

 Google Chrome.

 Android Studio

Operating System: Windows 7, Windows 8, Windows 10 or above versions.

Server Required: Firebase

21

DETAILED SYSTEM ANALYSIS

22

Data Flow Diagram:

User registration

Taking Quiz

Checking for
valid user

Not Valid

User

User

Validates

Valid User

23

Data Structure and Tables:

Data Structure:

Registration

User Login User Database

Learn More Category

MCQ

Home

Next

Result

Profile

24

Data Table:

25

Entity-Relationship Diagram:

Name Password

USER Receive Register

Registration

Perform

Name

Password

Email

Quiz Topic

Choose

Result

26

SYSTEM DESIGN

27

FORM DESIGN:

Sign Up Form –

Login Form-

28

Home Page-

Quiz From –

29

Forget Password –

Profile –

30

SOURCE CODE:

LoginActivity.java

package com.example.myapplication;

import androidx.annotation.NonNull;

import androidx.appcompat.app.AppCompatActivity;

import android.app.Activity;

import android.app.ProgressDialog;

import android.content.Intent;

import android.os.Bundle;

import android.text.TextUtils;

import android.view.View;

import android.widget.TextView;

import android.widget.Toast;

import com.example.myapplication.databinding.ActivityLoginBinding;

import com.google.android.gms.tasks.OnCompleteListener;

import com.google.android.gms.tasks.Task;

import com.google.firebase.auth.AuthResult;

import com.google.firebase.auth.FirebaseAuth;

public class LoginActivity extends AppCompatActivity {

 ActivityLoginBinding binding;

 FirebaseAuth auth;

 ProgressDialog dialog;

 TextView openForgetPass;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivityLoginBinding.inflate(getLayoutInflater());

 setContentView(binding.getRoot());

 auth = FirebaseAuth.getInstance();

 dialog = new ProgressDialog(this);

 dialog.setMessage("Logging in...");

31

 if (auth.getCurrentUser() !=null) {

 startActivity(new Intent(LoginActivity.this, MainActivity.class));

 finish();

 }

 openForgetPass = findViewById(R.id.ForgetPassword);

 binding.submitBtn.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 String email, pass;

 email = binding.emailBox.getText().toString();

 pass = binding.passwordBox.getText().toString();

 // Validations for input email and password

 if (TextUtils.isEmpty(email)) {

 Toast.makeText(getApplicationContext(), "Please enter your

email", Toast.LENGTH_LONG).show();

 return;

 }

 if (TextUtils.isEmpty(pass)) {

 Toast.makeText(getApplicationContext(), "Please enter your

password", Toast.LENGTH_LONG).show();

 return;

 }

 dialog.show();

 auth.signInWithEmailAndPassword(email,

pass).addOnCompleteListener(new OnCompleteListener<AuthResult>() {

 @Override

 public void onComplete(@NonNull Task<AuthResult> task) {

 dialog.dismiss();

 if (task.isSuccessful()) {

 startActivity(new Intent(LoginActivity.this,

MainActivity.class));

 finish();

 } else {

32

 Toast.makeText(LoginActivity.this,

task.getException().getLocalizedMessage(),

Toast.LENGTH_SHORT).show();

 }

 }

 });

 }

 });

 openForgetPass.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 startActivity(new Intent(LoginActivity.this,

ForgetPassActivity.class));

 }

 });

 binding.createNewBtn.setOnClickListener(new

View.OnClickListener() {

 @Override

 public void onClick(View view) {

 startActivity(new Intent(LoginActivity.this,SignupActivity.class));

 }

 });

 }

}

33

SignupActivity.java

package com.example.myapplication;

import androidx.annotation.NonNull;

import androidx.appcompat.app.AppCompatActivity;

import android.app.ProgressDialog;

import android.content.Intent;

import android.os.Bundle;

import android.text.TextUtils;

import android.view.View;

import android.widget.ProgressBar;

import android.widget.Toast;

import com.example.myapplication.databinding.ActivitySignupBinding;

import com.google.android.gms.tasks.OnCompleteListener;

import com.google.android.gms.tasks.Task;

import com.google.firebase.auth.AuthResult;

import com.google.firebase.auth.FirebaseAuth;

import com.google.firebase.firestore.FirebaseFirestore;

public class SignupActivity extends AppCompatActivity {

 ActivitySignupBinding binding;

 FirebaseAuth auth;

 FirebaseFirestore database;

 ProgressDialog dialog;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivitySignupBinding.inflate(getLayoutInflater());

 setContentView(binding.getRoot());

 auth = FirebaseAuth.getInstance();

 database = FirebaseFirestore.getInstance();

 dialog = new ProgressDialog(this);

 dialog.setMessage("Wait a moment creating a new account...");

34

 binding.createNewBtn.setOnClickListener(new

View.OnClickListener() {

 @Override

 public void onClick(View view) {

 String email, pass, name;

 email = binding.emailBox.getText().toString();

 pass = binding.passwordBox.getText().toString();

 name = binding.nameBox.getText().toString();

 final User user = new User(name, email, pass);

 // Validations for input email and password

 if (TextUtils.isEmpty(name)) {

 Toast.makeText(getApplicationContext(),

 "Please enter your details",

 Toast.LENGTH_LONG)

 .show();

 return;

 }

 if (TextUtils.isEmpty(email)) {

 Toast.makeText(getApplicationContext(),

 "Please enter your email",

 Toast.LENGTH_LONG)

 .show();

 return;

 }

 if (TextUtils.isEmpty(pass)) {

 Toast.makeText(getApplicationContext(),

 "Please enter your password",

 Toast.LENGTH_LONG)

 .show();

 return;

 }

 dialog.show();

 auth.createUserWithEmailAndPassword(email,

pass).addOnCompleteListener(new OnCompleteListener<AuthResult>() {

 @Override

 public void onComplete(@NonNull Task<AuthResult> task) {

 if (task.isSuccessful()) {

35

 String uid = task.getResult().getUser().getUid();

 database

 .collection("users")

 .document(uid)

 .set(user).addOnCompleteListener(new

OnCompleteListener<Void>() {

 @Override

 public void onComplete(@NonNull Task<Void> task) {

 if (task.isSuccessful()){

 dialog.dismiss();

 startActivity(new Intent(SignupActivity.this,

MainActivity.class));

 finish();

 }else {

 Toast.makeText(SignupActivity.this,

task.getException().getLocalizedMessage(),

Toast.LENGTH_SHORT).show();

 }

 }

 });

 } else {

 dialog.dismiss();

 Toast.makeText(SignupActivity.this,

task.getException().getLocalizedMessage(),

Toast.LENGTH_SHORT).show();

 }

 }

 });

 }

 });

 binding.loginBtn2.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 startActivity(new Intent(SignupActivity.this,LoginActivity.class));

 }

 });

 }

}

36

MainActivity.java

package com.example.myapplication;

import androidx.annotation.NonNull;;

import androidx.appcompat.app.AppCompatActivity;

import androidx.fragment.app.FragmentTransaction;

import android.content.Intent;

import android.os.Bundle;

import android.view.Menu;

import android.view.MenuItem;

import android.widget.Toast;

import com.example.myapplication.databinding.ActivityMainBinding;

import com.google.firebase.auth.FirebaseAuth;

import me.ibrahimsn.lib.OnItemSelectedListener;

public class MainActivity extends AppCompatActivity {

 ActivityMainBinding binding;

 FirebaseAuth mAuth;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivityMainBinding.inflate(getLayoutInflater());

 setContentView(binding.getRoot());

 mAuth = FirebaseAuth.getInstance();

 setSupportActionBar(binding.toolbar);

 FragmentTransaction transaction =

getSupportFragmentManager().beginTransaction();

 transaction.replace(R.id.content, new HomeFragment());

 transaction.commit();

 binding.bottomBar.setOnItemSelectedListener(new

OnItemSelectedListener() {

37

 @Override

 public boolean onItemSelect(int i) {

 FragmentTransaction transaction =

getSupportFragmentManager().beginTransaction();

 switch (i) {

 case 0:

 transaction.replace(R.id.content, new HomeFragment());

 transaction.commit();

 break;

 case 1:

 transaction.replace(R.id.content, new LearnMoreFragment());

 transaction.commit();

 break;

 case 2:

 transaction.replace(R.id.content, new ProfileFragment());

 transaction.commit();

 break;

 }

 return false;

 }

 });

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 getMenuInflater().inflate(R.menu.home_menu, menu);

 return true;

 }

 @Override

 public boolean onOptionsItemSelected(@NonNull MenuItem item) {

 switch (item.getItemId()) {

 case R.id.logout:

 mAuth.signOut();

 Intent intent = new Intent(MainActivity.this,LoginActivity.class);

 startActivity(intent);

 Toast.makeText(this, "Logging out...",

Toast.LENGTH_SHORT).show();

 break;

38

 }

 return super.onOptionsItemSelected(item);

 }

 /**public void logout()

 {

 Toast.makeText(this, "Logging out, please wait...",

Toast.LENGTH_SHORT).show();

 }**/

}

QuizActivity.java

package com.example.myapplication;

import androidx.appcompat.app.AppCompatActivity;

import android.content.Intent;

import android.os.Bundle;

import android.os.CountDownTimer;

import android.view.View;

import android.widget.Button;

import android.widget.TextView;

import android.widget.Toast;

import com.example.myapplication.databinding.ActivityQuizBinding;

import com.google.android.gms.tasks.OnSuccessListener;

import com.google.firebase.firestore.DocumentSnapshot;

import com.google.firebase.firestore.FirebaseFirestore;

import com.google.firebase.firestore.QuerySnapshot;

import java.util.ArrayList;

import java.util.Random;

public class QuizActivity extends AppCompatActivity {

 ActivityQuizBinding binding;

 ArrayList<Question> questions;

39

 int index = 0;

 Question question;

 CountDownTimer timer;

 FirebaseFirestore database;

 int correctAnswers = 0;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivityQuizBinding.inflate(getLayoutInflater());

 setContentView(binding.getRoot());

 questions = new ArrayList<>();

 database = FirebaseFirestore.getInstance();

 final String catId = getIntent().getStringExtra("catId");

 ///Random random = new Random();

 //final int rand = random.nextInt(10);

 database.collection("categories")

 .document(catId)

 .collection("questions")

 //.whereGreaterThanOrEqualTo("index", rand)

 //.orderBy("index")

 /***.limit(5)***/.get().addOnSuccessListener(new

OnSuccessListener<QuerySnapshot>() {

 @Override

 public void onSuccess(QuerySnapshot queryDocumentSnapshots) {

 if (queryDocumentSnapshots.getDocuments().size() < 5) {

 database.collection("categories")

 .document(catId)

 .collection("questions")

 ///.whereLessThanOrEqualTo("index", rand)

 ///.orderBy("index")

 /***.limit(5)***/.get().addOnSuccessListener(new

OnSuccessListener<QuerySnapshot>() {

 @Override

 public void onSuccess(QuerySnapshot

queryDocumentSnapshots) {

40

 for (DocumentSnapshot snapshot :

queryDocumentSnapshots) {

 Question question = snapshot.toObject(Question.class);

 questions.add(question);

 }

 setNextQuestion();

 }

 });

 } else {

 for (DocumentSnapshot snapshot : queryDocumentSnapshots) {

 Question question = snapshot.toObject(Question.class);

 questions.add(question);

 }

 setNextQuestion();

 }

 }

 });

 resetTimer();

 //////ExitButton/////

 binding.exitBtn.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 startActivity(new Intent(QuizActivity.this,MainActivity.class));

 }

 });

 }

 void resetTimer() {

 timer = new CountDownTimer(30000, 1000) {

 @Override

 public void onTick(long millisUntilFinished) {

 binding.timer.setText(String.valueOf(millisUntilFinished / 1000));

 }

 @Override

 public void onFinish() {

41

 }

 };

 }

 void showAnswer() {

 if (question.getAnswer().equals(binding.option1.getText().toString()))

binding.option1.setBackground(getResources().getDrawable(R.drawable.opt

ion_right));

 else if

(question.getAnswer().equals(binding.option2.getText().toString()))

binding.option2.setBackground(getResources().getDrawable(R.drawable.opt

ion_right));

 else if

(question.getAnswer().equals(binding.option3.getText().toString()))

binding.option3.setBackground(getResources().getDrawable(R.drawable.opt

ion_right));

 else if

(question.getAnswer().equals(binding.option4.getText().toString()))

binding.option4.setBackground(getResources().getDrawable(R.drawable.opt

ion_right));

 }

 void setNextQuestion() {

 if (timer != null)

 timer.cancel();

 timer.start();

 if (index < questions.size()) {

 binding.questionCounter.setText(String.format("%d/%d", (index +

1), questions.size()));

 question = questions.get(index);

 binding.question.setText(question.getQuestion());

 binding.option1.setText(question.getOption1());

 binding.option2.setText(question.getOption2());

42

 binding.option3.setText(question.getOption3());

 binding.option4.setText(question.getOption4());

 }

 binding.nextBtn.setClickable(false);

 }

 void checkAnswer(TextView textView) {

 String selectedAnswer = textView.getText().toString();

 if (selectedAnswer.equals(question.getAnswer())) {

 correctAnswers++;

textView.setBackground(getResources().getDrawable(R.drawable.option_ri

ght));

 } else {

 showAnswer();

textView.setBackground(getResources().getDrawable(R.drawable.option_w

rong));

 }

 binding.nextBtn.setClickable(true);

 }

 void reset() {

binding.option1.setBackground(getResources().getDrawable(R.drawable.opt

ion_unselected));

binding.option2.setBackground(getResources().getDrawable(R.drawable.opt

ion_unselected));

binding.option3.setBackground(getResources().getDrawable(R.drawable.opt

ion_unselected));

binding.option4.setBackground(getResources().getDrawable(R.drawable.opt

ion_unselected));

 }

43

 public void onClick(View view) {

 switch (view.getId()) {

 case R.id.option_1:

 case R.id.option_2:

 case R.id.option_3:

 case R.id.option_4:

 if (timer != null)

 timer.cancel();

 TextView selected = (TextView) view;

 checkAnswer(selected);

 disableButton();

 break;

 case R.id.next_Btn:

 reset();

 if (index <= questions.size()) {

 index++;

 enableButton();

 setNextQuestion();

 } else {

 Intent intent = new Intent(QuizActivity.this,

ResultActivity.class);

 intent.putExtra("correct", correctAnswers);

 intent.putExtra("total", questions.size());

 startActivity(intent);

 Toast.makeText(this, "Quiz Finished",

Toast.LENGTH_SHORT).show();

 }

 break;

 }

 }

 public void enableButton(){

 binding.option1.setClickable(true);

 binding.option2.setClickable(true);

 binding.option3.setClickable(true);

 binding.option4.setClickable(true);

 }

44

 public void disableButton(){

 binding.option1.setClickable(false);

 binding.option2.setClickable(false);

 binding.option3.setClickable(false);

 binding.option4.setClickable(false);

 }

}

ResultActivity.java

package com.example.myapplication;

import androidx.appcompat.app.AppCompatActivity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import com.example.myapplication.databinding.ActivityResultBinding;

public class ResultActivity extends AppCompatActivity {

 ActivityResultBinding binding;

 int POINTS = 10;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivityResultBinding.inflate(getLayoutInflater());

 setContentView(binding.getRoot());

 int correctAnswers = getIntent().getIntExtra("correct", 0);

 int totalQuestions = getIntent().getIntExtra("total", 0);

 int points = correctAnswers * POINTS;

 binding.score.setText(String.format("%d/%d", correctAnswers,

totalQuestions));

45

 binding.shareBtn.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 Intent sharingIntent = new Intent(Intent.ACTION_SEND);

 sharingIntent.setType("text/plain");

 String shareBody = "Hey! I just played Whiz Quiz App and it's

Fantastic!";

 String shareSub = "Your subject here";

 sharingIntent.putExtra(Intent.EXTRA_SUBJECT, shareSub);

 sharingIntent.putExtra(Intent.EXTRA_TEXT, shareBody);

 startActivity(Intent.createChooser(sharingIntent, "Share using"));

 }

 });

 ///RestartButton///

 binding.restartBtn.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 startActivity(new Intent(ResultActivity.this,MainActivity.class));

 }

 });

 }

}

46

ForgetPassActivity.java

package com.example.myapplication;

import androidx.annotation.NonNull;

import androidx.appcompat.app.AppCompatActivity;

import android.app.ProgressDialog;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Button;

import android.widget.EditText;

import android.widget.Toast;

import com.google.android.gms.tasks.OnCompleteListener;

import com.google.android.gms.tasks.Task;

import com.google.firebase.auth.FirebaseAuth;

public class ForgetPassActivity extends AppCompatActivity {

 ProgressDialog dialog;

 private Button forgetBtn, forgetLoginBtn;

 private EditText txtEmail;

 private String email;

 private FirebaseAuth auth;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_forget_pass);

 dialog = new ProgressDialog(this);

 dialog.setMessage("Wait a moment");

 txtEmail = findViewById(R.id.ForgetemailBox);

 forgetBtn = findViewById(R.id.ForgetBtn);

 forgetLoginBtn = findViewById(R.id.ForgetLoginBtn);

 forgetBtn.setOnClickListener(new View.OnClickListener() {

47

 @Override

 public void onClick(View view) {

 email = txtEmail.getText().toString();

 if (email.isEmpty()){

 Toast.makeText(ForgetPassActivity.this, "Please provide you

email", Toast.LENGTH_SHORT).show();

 }else {

 forgetPassword();

 }

 dialog.show();

 }

 });

 forgetLoginBtn.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 startActivity(new

Intent(ForgetPassActivity.this,LoginActivity.class));

 }

 });

 }

 private void forgetPassword() {

 FirebaseAuth auth = FirebaseAuth.getInstance();

 auth.sendPasswordResetEmail(email)

 .addOnCompleteListener(new OnCompleteListener<Void>() {

 @Override

 public void onComplete(@NonNull Task<Void> task) {

 if (task.isSuccessful()){

 dialog.dismiss();

 Toast.makeText(ForgetPassActivity.this, "We have sent

you instructions to reset your password", Toast.LENGTH_SHORT).show();

48

 startActivity(new Intent(ForgetPassActivity.this,

LoginActivity.class));

 finish();

 } else {

 dialog.dismiss();

 Toast.makeText(ForgetPassActivity.this, "Error :

"+task.getException().getMessage(), Toast.LENGTH_SHORT).show();

 }

 }

 });

 }

}

HomeFragment.java

package com.example.myapplication;

import android.os.Bundle;

import androidx.annotation.Nullable;

import androidx.fragment.app.Fragment;

import androidx.recyclerview.widget.GridLayoutManager;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import com.example.myapplication.databinding.FragmentHomeBinding;

import com.google.firebase.firestore.DocumentSnapshot;

import com.google.firebase.firestore.EventListener;

import com.google.firebase.firestore.FirebaseFirestore;

import com.google.firebase.firestore.FirebaseFirestoreException;

import com.google.firebase.firestore.QuerySnapshot;

import java.util.ArrayList;

public class HomeFragment extends Fragment {

 public HomeFragment() {

 // Required empty public constructor

49

 }

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 }

 FragmentHomeBinding binding;

 FirebaseFirestore database;

 @Override

 public View onCreateView(LayoutInflater inflater, ViewGroup container,

 Bundle savedInstanceState) {

 binding = FragmentHomeBinding.inflate(inflater, container, false);

 database = FirebaseFirestore.getInstance();

 ////Category list/////

 final ArrayList<CategoryModel> categories = new ArrayList<>();

 final CategoryAdapter adapter = new CategoryAdapter(

getContext(),categories);

 database.collection("categories")

 .addSnapshotListener(new EventListener<QuerySnapshot>() {

 @Override

 public void onEvent(@Nullable QuerySnapshot value,

@Nullable FirebaseFirestoreException error) {

 categories.clear();

 for (DocumentSnapshot snapshot: value.getDocuments()) {

 CategoryModel model =

snapshot.toObject(CategoryModel.class);

 model.setCategoryId(snapshot.getId());

 categories.add(model);

 }

 adapter.notifyDataSetChanged();

50

 }

 });

 binding.categoryList.setLayoutManager(new

GridLayoutManager(getContext(), 2));

 binding.categoryList.setAdapter(adapter);

 // Inflate the layout for this fragment

 return binding.getRoot();

 }

}

ProfileFragment.java

package com.example.myapplication;

import android.app.ProgressDialog;

import android.os.Bundle;

import androidx.annotation.NonNull;

import androidx.annotation.Nullable;

import androidx.fragment.app.Fragment;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import android.widget.Button;

import android.widget.EditText;

import android.widget.Toast;

import com.google.android.gms.tasks.OnFailureListener;

import com.google.android.gms.tasks.OnSuccessListener;

import com.google.firebase.auth.FirebaseAuth;

import com.google.firebase.auth.FirebaseUser;

import com.google.firebase.firestore.DocumentReference;

import com.google.firebase.firestore.DocumentSnapshot;

import com.google.firebase.firestore.EventListener;

import com.google.firebase.firestore.FirebaseFirestore;

import com.google.firebase.firestore.FirebaseFirestoreException;

51

import java.util.HashMap;

import java.util.Map;

public class ProfileFragment extends Fragment {

 EditText profile_name, profile_email, profile_password;

 FirebaseAuth fAuth;

 FirebaseFirestore fStore;

 String userID;

 Button updateProfileBtn;

 FirebaseUser user;

 ProgressDialog dialog;

 public ProfileFragment() {

 // Required empty public constructor

 }

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 }

 @Override

 public View onCreateView(LayoutInflater inflater, ViewGroup container,

 Bundle savedInstanceState) {

 // Inflate the layout for this fragment

 View view = inflater.inflate(R.layout.fragment_profile, container,

false);

 profile_name = view.findViewById(R.id.nameBox2);

 profile_email = view.findViewById(R.id.emailBox2);

 profile_password = view.findViewById(R.id.passBox);

 updateProfileBtn = view.findViewById(R.id.updateProfile_Btn);

 fAuth = FirebaseAuth.getInstance();

 fStore = FirebaseFirestore.getInstance();

52

 user = fAuth.getCurrentUser();

 userID = fAuth.getCurrentUser().getUid();

 dialog = new ProgressDialog(getActivity());

 dialog.setMessage("Updating...");

 DocumentReference documentReference =

fStore.collection("users").document(userID);

 documentReference.addSnapshotListener(new

EventListener<DocumentSnapshot>() {

 @Override

 public void onEvent(@Nullable DocumentSnapshot

documentSnapshot, @Nullable FirebaseFirestoreException e) {

 profile_name.setText(documentSnapshot.getString("name"));

 profile_email.setText(documentSnapshot.getString("email"));

 profile_password.setText(documentSnapshot.getString("pass"));

 }

 });

 updateProfileBtn.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 if (profile_name.getText().toString().isEmpty() ||

profile_email.getText().toString().isEmpty()){

 Toast.makeText(getActivity(), "Please fill the fields",

Toast.LENGTH_SHORT).show();

 return;

 }

 String email = profile_email.getText().toString();

 user.updateEmail(email).addOnSuccessListener(new

OnSuccessListener<Void>() {

 @Override

 public void onSuccess(Void unused) {

 DocumentReference docRef =

fStore.collection("users").document(user.getUid());

 Map<String,Object> edited = new HashMap<>();

 edited.put("email",email);

53

 edited.put("name", profile_name.getText().toString());

 edited.put("pass", profile_password.getText().toString());

 dialog.show();

 docRef.update(edited).addOnSuccessListener(new

OnSuccessListener<Void>() {

 @Override

 public void onSuccess(Void unused) {

 dialog.dismiss();

 Toast.makeText(getActivity(), "Profile updated",

Toast.LENGTH_SHORT).show();

 }

 });

 //Toast.makeText(getActivity(), "Email is changed",

Toast.LENGTH_SHORT).show();

 }

 }).addOnFailureListener(new OnFailureListener() {

 @Override

 public void onFailure(@NonNull Exception e) {

 Toast.makeText(getActivity(), e.getMessage(),

Toast.LENGTH_SHORT).show();

 }

 });

 }

 });

 return view;

 }

}

54

INPUT AND OUTPUT SCREEN:

Registration –

Login –

55

Home –

Quiz –

56

Result –

Profile –

57

TESTING & VALIDATION CHECKS

58

TESTING AND VALIDATION CHECK:

Validation testing in software engineering is in place to determine if the

existing system complies with the system requirements and performs the

dedicated functions for which it is designed along with meeting the goals

and needs of the organization.

The process of evaluating software during the development process or at the

end of the development process to determine whether it satisfies specified

business requirements.

Validation Testing ensures that the product actually meets the client's needs.

It can also be defined as to demonstrate that the product fulfills its intended

use when deployed on appropriate environment.

Whenever any particular software is tested then the main motive is to check

the quality against the defects being found.

The developers fix the bugs and the software is rechecked to make sure that

absolutely no bugs are left out in that. This not only shoots the product’s

quality but also its user acceptance.

 To ensure customer satisfaction

 To be confident about the product

 To fulfil the client’s requirement until the optimum capacity

 Software acceptance from the end-user

Client-side validation is an initial check and an important feature of good

user experience; by catching invalid data on the client-side, the user can fix

it straight away. If it gets to the server and is then rejected, a noticeable

delay is caused by a round trip to the server and then back to the client-side

to tell the user to fix their data.

59

SYSTEM SECURITY MEASURES

60

SYSTEM SECURITY MEASURES:

Security of a computer system is a crucial task. It is a process of ensuring

confidentiality A system is said to be secure if its resources are used and

accessed as intended under all the circumstances, but no system can

guarantee absolute security from several of the various threats and

unauthorized access.

Security measures will be taken:

 Strong passwords:

This first measure is taken that users may used proper format in their

passwords and password length must be 6 characters.

 Confidentiality:

If any users is sharing their personal details in login form it will be

secure safely as only users can access such information.

61

IMPLEMENTATION, EVALUATION

AND MAINTAINANCE

62

IMPLEMENTATION, EVALUATION & MAINTAINANCE:

Implementation is a process of ensuring that the information system is

operational. It involves –

Constructing a new system from scratch.

Constructing a new system from the existing one.

Implementation allows the users to take over its operation for use and

evaluation. It involves training the users to handle the system and plan for a

smooth conversion.

System Maintenance:

Maintenance means restoring something to its original conditions.

Enhancement means adding, modifying the code to support the changes in

the user specification. System maintenance conforms the system to its

original requirements and enhancement adds to system capability by

incorporating new requirements. Thus, maintenance changes the existing

system, enhancement adds features to the existing system, and development

replaces the existing system. It is an important part of system development

that includes the activities which corrects errors in system design and

implementation, updates the documents, and tests the data.

Maintenance Types:

System maintenance can be classified into three types − Corrective

Maintenance − Enables user to carry out the repairing and correcting leftover

problems.

Adaptive Maintenance − Enables user to replace the functions of the

programs. Perfective Maintenance − Enables user to modify or enhance the

programs according to the users’ requirements and changing needs.

Post-Implementation Evaluation Review (PIER):

PIER is a tool or standard approach for evaluating the outcome of the project

and determine whether the project is producing the expected benefits to the

processes, products or services. It enables the user to verify that the project

or system has achieved its desired outcome within specified time period and

planned cost. PIER ensures that the project has met its goals by evaluating

the development and management processes of the project.

63

FUTURE SCOPE OF THE PROJECT

64

FUTURE SCOPE OF THE PROJECT:

More Content

At present the content of this app is too less, So we can add more features

like videos, documents, test series, discussion section and more courses.

This features will help student to gain more knowledge.

Monetize

Monetization via the Paid model is very simple. We have to just upload

our app to Google, set the price, select the regions and publish the app.

Providing more security

In future this app can be update with more secured as any users personal

information cannot be hacked or also any users cannot be hesitate to

access or visit the app as more security features will be developed in

updated version.

Global Reach

In future this app can be made globally access we can upload on Google

play store so user can download from there.

Additional features

Efforts can be made in future for adding and developing app with

additional features such as video facilities related to good deeds or work

made by public

65

CONCLUSION

66

CONCLUSION:

Whiz Quiz App is Android based platform created for educational purpose

and development of this app is mainly required by students and learners to

prepare themselves for UPSC examinations directly through smartphones

and tablets in hands. One of the major goal of our project is to facilitate best

quiz app to judge their knowledge and educational improvements about

UPSC Examination. The main goal is to enable user to practice for

subjective tests. It provides facility to solve quiz anywhere and every time.

User can take the test his/her choice regarding the topic. User can register,

log-in, and solve the quiz with his/her specific I’d, and can see the scores as

well

The students must register his/her name along with all information required

and enter the email id and password for the login process. Using this email

id and password to log in to the Whiz Quiz App. As soon as the student

chooses the quiz topic, each topic contain 10 questions each, the questions

with four choices will be shown. The students must choose any option as the

answer. After submitting the answer if it is turn into Green color it means

your answer is right and if it is turn into red you give wrong answer after

completing the quiz you know the score .

67

BIBLIOGRAPHY AND REFERENCE

68

BIBLIOGRAPHY AND REFERENCE:

While developing this project internet was the eternal support.

Following are the websites referred by us which helped us in developing our

project:

 www.developer.android.com

 www.stackoverflow.com

 www.github.com

 www.getbootstrap.com

http://www.getbootstrap.com/

69

A

PROJECT SYNOPSIS

ON

“Whiz: UPSC Quiz App”

Submitted to

G. S. COLLEGE OF COMMERCE & ECONOMICS, NAGPUR

AUTONOMOUS

In the Partial Fulfillment of

B.Com. (Computer Application) Final Year

Synopsis Submitted by
Syed Arshad Hussain

Mustafa Hussaini

Under the Guidance of

Pravin J. Yadao

G. S. COLLEGE OF COMMERCE & ECONOMICS, NAGPUR
AUTONOMOUS

2021-2022

70

1. Introduction: (Write 4 to 5 lines)

Whiz: UPSC Quiz App is an android application that will be developed by Java

programming language, Android Studio and Google Firebase this app will cover

competitive examinations like Union Public Service Commission (UPSC) it will help

students who are preparing for this examination. In this app, there will be questions with

four answer options and questions will be on Indian Polity, Geography, History, Indian

Economy, Science and Technology, Environment and Ecology, International Relations

and many mores.

2. Objectives of the project: (Write only 5 points)

1. This app is designed to help a student prepare for competitive examinations like UPSC

2. There will be questions like MCQs and users will have to select correct answers from

the given options.

3. It will design in such a way that it covers all topic questions including previous year

questions from the examination.

4. Included Login and Sign Up pages, User can login with email address and password.

5. The timer is the most exciting feature where the user can solve questions in a given

time.

3. Project Category: Android Application

4. Tools/ Platform/ Languages to be used:

Programming Language : Java

Software used : Android Studio

Operating System : Windows 11

Data Base : Google Firebase

5. Scope of future application: (Write 4 to 5 points)

1. We can upgrade to all in one exam Quiz app, this app will design to help a student

prepare for competitive examinations like UPSC, MPSC, SSC and BANK in a single app.

2. The scoreboard will help students to compare scores with other users of the app.

3. Invite friends and get rewarded.

4. Can be published on the play store.

Mustafa Hussaini

Submitted by,

Syed Arshad Hussain

 Approved by,

 Prof. Pravin Yadao

 Project Guide

