
Page | 1

A

PROJECT

ON

“FLAPPY BIRD & PLATFORMER”

Submitted to

Shiksha Mandal’s
G. S. COLLEGE OF COMMERCE & ECONOMICS, NAGPUR

(AUTONOMOUS)

In the Partial Fulfillment of

B.Com. (Computer Application) Final Year

Submitted by
Chandan Sharma

 Sanket Malve

Under the Guidance of

Pravin J. Yadao

Shiksha Mandal’s

G. S. COLLEGE OF COMMERCE & ECONOMICS, NAGPUR

(AUTONOMOUS)

2021-2022

Page | 2

Shiksha Mandal’s

G. S. COLLEGE OF COMMERCE & ECONOMICS,

NAGPUR

(AUTONOMOUS)

(2021 - 2022)

This is to certify that Mr. Chandan Dharampal Sharma & Sanket Naresh Malve has

completed their project on the topic of “FLAPPY BIRD & PLATFORMER”

prescribed by G. S. College of Commerce & Economics, Nagpur (Autonomous) for

B.Com. (Computer Application) – Semester-VI.

 Date:

 Place: Nagpur

 Pravin J. Yadao

 Project Guide

External Examiner Internal Examiner

Page | 3

ACKNOWLEDGEMENT

We take this opportunity to express our deep gratitude and whole hearted thanks to

project guide Prof. Pravin Yadao, Coordinator for his guidance throughout this work. We

are very much thankful to him for his constant encouragement, support and kindness.

We are also grateful to our teachers Prof. Rahul Tiwari, Prof. Sushma Gawande, Prof.

Preethi Ragnar, Prof. Prajakta Deshpande and Prof. Haresh Naringin for their

encouragement, help and support from time to time.

We also wish to express our sincere thanks to Principal Dr. N. Y. Khandi for providing us

wide range of opportunities, facilities and inspiration to gather professional knowledge

and material without which this project could not have been completed.

 Chandan Dharmapala

 Sanket Naresh Malve

Date:

Place: Nagpur

Page | 4

DECLARATION

We Chandan Dharampal Sharma & Sanket Naresh Malve hereby honestly declare

that the work entitled “FLAPPY BIRD & PLATFORMER” submitted by us at G. S.

College of Commerce & Economics, Nagpur (Autonomous) in partial fulfillment of

requirement for the award of B.Com. (Computer Application) degree by Attractant

Tukituki Maharaj, Nagpur University, Nagpur has not been submitted elsewhere for the

award of any degree, during the academic session 2021-2022.

The project has been developed and completed by us independently under the supervision

of the subject teacher and project guide.

 Chandan Dharampal Sharma

 Sanket Naresh Malve

Date:

Place: Nagpur

Page | 5

INDEX

Sr. No

Particular

Page no.

Remarks

Signature

1. INTRODUCTION 6-10

2. OBJECTIVES 11-15

 3. PROJECT CATEGORY 16-24

 4. SOFTWARE AND

HARDWARE REQUIREMENT

SPECIFICATIONS

25-26

 5.

DETAILED SYSTEM

ANALYSIS

6.1. Data Flow Diagram

6.2. Structure of Application

6.3 Data Tables

27

28

29

30

 6. SYSTEM DESIGN

7.1. Form Design

7.2. Source Code

7.3. Input And Output Screen

31

32-35

36-68

69-72

 7. TESTING AND VALIDATION 73-86

 8. SYSTEM AND SECURITIES

MEASURES

87-88

 9. IMPLEMENTATION,

EVALUATION AND

MAINTENANCE

89-94

 10. FUTURE SCOPE OF

PROJECT

95-96

 11. CONCLUSION 97-98

 12. BIBLIOGRAPHY 99-100

 13. APPROVED COPY OF

SYNOPSIS

101-105

Page | 6

INTRODUCTION

Page | 7

FLAPPYBIRD

Flappy Bird is an arcade -style game in which the player controls the bird

Feby, which moves persistently to the right. The player is tasked with

navigating Feby through pairs of pipes that have equally sized gaps placed at

random heights. Each successful pass through a pair of pipes awards the

player one point. Colliding with a pipe or the ground ends the gameplay.

During the game over screen, the player is awarded a bronze medal if they

reached ten or more points, a silver medal from twenty points, a gold medal

from thirty points, and a platinum medal from forty points. Flappy Bird was

originally released on May 24, 2013, with support for the iPhone 5. The

game was subsequently updated for iOS 7 in September 2013. Although

originally unsuccessful, the game received a massive influx of players after

being reviewed by the Swedish YouTuber PewDiePie.] In January 2014, it

topped the Free Apps chart in the US and Chinese App Stores, and later that

month topped the same section of the UK App Store where it was touted as

"the new Angry Birds". It ended January as the most downloaded App on

the App Store. The Android version of Flappy Bird was released to the

Google Play store on January 30, 2014.

Flappy Bird was created and developed by Nguyen in two to three days. The

bird character, Feby, was originally designed in 2012 for a

cancelled platform. The gameplay was inspired by the act of bouncing a ping

pong ball against a paddle for as long as possible. Initially the game was

significantly easier than it became in the final version, however Nguyen said

he found this version to be boring and subsequently tightened up the

difficulty. He described the business plan of a free download with in-game

https://en.wikipedia.org/wiki/IPhone_5
https://en.wikipedia.org/wiki/IOS_7
https://en.wikipedia.org/wiki/PewDiePie
https://en.wikipedia.org/wiki/Flappy_Bird#cite_note-15
https://en.wikipedia.org/wiki/App_Store_(iOS)
https://en.wikipedia.org/wiki/Angry_Birds

Page | 8

advertisements as "very common in the Japanese market. The Mechanics of

Flappy Bird •

Flappy Bird is based around a simple interaction: press screen to flap wings.

But it is clear that Nguyen has spent time working out the exact vertical lift

achieved by this single

input; just as he has got the gap between pipes exactly right. Creating Flappy

Birds in Scratch A good way to introduce yourself to Programming is to use

SCRATCH. Scratch was created by MIIT to get young people (as young as

five years old!) interested in the concept of programming and howsequences

can get sprites to do clever things. Can Flappy Birds be created in Scratch

Page | 9

PLATFORMER

A platform game (often simplified as platformer or jump 'n' run games) is

a video game genre and subgenre of action game in which the core objective

is to move the player character between points in a rendered environment.

Platform games are characterized by their level design featuring uneven

terrain and suspended platforms of varying height that requires use of

the player character’s abilities, such as jumping and climbing, to navigate

the player's environment and reach their goal. Other acrobatic maneuvers

may factor into the gameplay as well, such as swinging from objects such as

vines or grappling hooks, jumping off walls, air dashing, gliding through the

air, being shot from cannons or bouncing from springboards or trampolines.

A platform game requires the player to maneuver their character across

platforms, to reach a goal, while confronting enemies and avoiding obstacles

along the way. These games are either presented from the side view, using

two-dimensional movement, or in 3D with the camera placed either behind

the main character or in isometric perspective. Typical platforming

gameplay tends to be very dynamic and challenges a player's reflexes,

timing, and dexterity with controls.

Page | 10

While commonly associated with console game, there have been many

prominent platform games released for video arcades, as well as for handled

game consoles and home computers.

During the peak of platform games' popularity in the late 1980s and early

1990s, platform games were estimated to consist of between a quarter and a

third of all console games, but have since been supplanted by first-person

shooters. In 2006, the genre experienced a decline in popularity, representing

a 2% market share as compared to 15% in 1998; however, the genre still

exists in commercial environment, with a number of games selling in the

millions of units.Most games of this genre consist of multiple levels of

increasing difficulty, that may also be interleaved by boss encounters, where

the character has to defeat a particularly dangerous enemy in order to

progress. Usually the level order is pre-determined, but some games also

allow players to navigate freely throughout the game world, or may feature

different paths to take at certain points. Simple logical puzzles to resolve and

skill trials to overcome are another common element in the genre.

Page | 11

Objective

Page | 12

Objective of Flappy Bird Game

Goal

It's a simple game of the infinite level type. In this case, you control a

bird: pressing a button makes it flap its wings which increases its he ight.

Gravity is also acting on the bird, causing it to fall over time. To

complicate things, an unending series of random obstacles enter from the

left side of the screen, which must be avoided by flying over, under, or

through holes in them. If the bird hits an obstacle, it's "game over".

A simple game: one input (press any button or shake), one character to

move up and down, and a series of obstacles that enter from the right and

move across the screen and leave on the left.

Some complications can be thrown in: the obstacles are random in size

and structure, and the speed at which they move can increase over time.

Use

When the system starts, it presents the user with a choice of using the

accelerometer (shake) to flap, or pressing buttons. Choice is shown by

filling the left half of the Trellis with yellow, and the right half with blue.

Pressing a yellow button selects the accelerometer while blue selects

using buttons.

The game then starts. The bird (yellow pixel) will gradually fall under

the effects of the game's gravity. Flapping (by shaking or pressing any

button) will cause the bird to move up. Over time green posts will entry

Page | 13

from the right and move across the display, disappearing off the left side.

The player's job is to maneuver the bird to avoid hitting the posts. As the

game progresses, the speed of the posts increases. Initially posts extend

from the bottom of the screen. In time they can extend from the top as

well. Eventually there will be posts that extend from both top and bottom

and the player has to guide the bird between the two pieces of the post.

Entertainment

 Our main objective is to provide entertainment, fun and to refresh

the mind of the user. It also increases the level of concentration, ability to

think and focus of the user.

Design

Let's write this as an object-oriented system. So, the first question is:

"What are the things?"

Let's start by having a class that implements the rules of play, initial

state, win conditions (or in this case, loose conditions).

Next we have a class to implement the player character: the class. That's

the player character in the game. It's what the player has (some) control

over.

Finally we need a class to implement the obstacles, which is the class,

because they look sort of like posts.

The object is the central thing, it has a single instance and zero or

more objects that are on the screen. has a run function that loops until

the gamer is over, i.e. until the bird collides with a post.

Each time though the run function's loop, it will look at input and make

adjustments to the bird's altitude based on gravity and user activity.

Page | 14

Occasionally the scene will be advanced, moving posts to the right. It's at

this point that a collision between the bird and a post is checked for and

dealt with. Even more infrequently, a new post will be added to the right

side of the screen.

Apply previous Skill to put together basis blocks within scratch to create

an app style game

Extend Knowledge about variable and how you can affect the difficulty

within a game

Some complication can be thrown in the obstacles are random in size and

structure and the speed at which they move can increase over time.

Flexible

This software is quite flexible as it allows one to add-on new updations or

changes that one find suitable. The updation can be made according to the

requirement which makes this project more flexible

Objective of Platformer game

A platform game (often simplified as platformer or jump 'n' run games)

video game genre and subgenre action game in which the core objective is

to move the player character between points in a rendered environment.

Remember that gameplay trumps animation -- your priority is to make it feel

good first, then make it look good. For example, from an artistic point of

view you might want your character to crouch before they jump, but for a

responsive platformer having a delay before they leave the ground is usually

not desirable.

Page | 15

Platformers are curated so much because: -They are satisfying, relaxing and

almost everybody likes them. -They have simple controls. -Infinite creativity

can be used on them.

Develop a data driven cross platform game engine supporting

 Desktop

 XBOX One

 Android

Develop a game using the engine and produce playable builds for all

supported

platforms.

 Maintaining such type of project does not cost much and don’t require any

specialization and can be maintained easily.

 This software is compatible for every system. It does not require any

specifications. Installing lengthy and bulky software are not necessary for

installing this software.

Page | 16

Project category

Page | 17

In this project “Flappy bird and platformer” we use python and for backend

mysql language .

Fronted:-

PYTHON:-

➢ Programming Language Used In Project

Python

Python is a high-level, interpreted, interactive and object-oriented scripting

language. Python is designed to be highly readable. It uses English keywords

frequently where as other languages use punctuation, and it has fewer

syntactical

constructions than other languages.

• Python is Interpreted − Python is processed at runtime by the interpreter.

You do not need to compile your program before executing it. This is similar

to PERL and PHP.

• Python is Interactive − You can actually sit at a Python prompt and interact

with the interpreter directly to write your programs.

• Python is Object-Oriented − Python supports Object-Oriented style or

technique of programming that encapsulates code within objects.

• Python is a Beginner's Language − Python is a great language for the

beginner-level programmers and supports the development of a wide range

of applications from simple text processing to WWW browsers to games.

Page | 18

History of Python

Python was developed by Guido van Rossum in the late eighties and early

nineties

at the National Research Institute for Mathematics and Computer Science in

the

Netherlands.

Python is derived from many other languages, including ABC, Modula-3, C,

C++,

Algol-68, Smalltalk, and Unix shell and other scripting languages.

Python is copyrighted. Like Perl, Python source code is now available under

the

GNU General Public License (GPL).

Python is now maintained by a core development team at the institute,

although

Guido van Rossum still holds a vital role in directing its progress.

Python Features

Python's features include −

• Easy-to-learn − Python has few keywords, simple structure, and a clearly

defined syntax. This allows the student to pick up the language quickly.

• Easy-to-read − Python code is more clearly defined and visible to the eyes.

• Easy-to-maintain − Python's source code is fairly easy-to-maintained.

Page | 19

• A broad standard library − Python's bulk of the library is very portable and

cross-platform compatible on UNIX, Windows, and Macintosh.

• Interactive Mode − Python has support for an interactive mode which

allows

interactive testing and debugging of snippets of code.

• Portable − Python can run on a wide variety of hardware platforms and has

the same interface on all platforms.

• Extendable − You can add low-level modules to the Python interpreter.

These modules enable programmers to add to or customize their tools to be

more efficient.

• Databases − Python provides interfaces to all major commercial databases.

• GUI Programming − Python supports GUI applications that can be created

and ported to many system calls, libraries and windows systems, such as

Windows MFC, Macintosh, and the X Window system of Unix.

• Scalable − Python provides a better structure and support for large

programs

than shell scripting.

Apart from the above-mentioned features, Python has a big list of good

features,

few are listed below −

Page | 20

• It supports functional and structured programming methods as well as

OOP.

• It can be used as a scripting language or can be compiled to byte-code for

building large applications.

• It provides very high-level dynamic data types and supports dynamic type

checking.

• It supports automatic garbage collection.

• It can be easily integrated with C, C++, COM, ActiveX, CORBA, and

Java.

List of why Python is popular:

• The Python framework also has modules and packages, which facilitates

code

reusability.

• GUI Programming − Python supports GUI applications that can be created

and ported to many system calls, libraries and windows systems, such as

Windows MFC, Macintosh, and the X Window system of Unix.

Page | 21

• Scalable − Python provides a better structure and support for large

programs

than shell scripting.

Apart from the above-mentioned features, Python has a big list of good

features,

few are listed below −

• It supports functional and structured programming methods as well as

OOP.

• It can be used as a scripting language or can be compiled to byte-code for

building large applications.

• It provides very high-level dynamic data types and supports dynamic type

checking.

• It supports automatic garbage collection.

• It can be easily integrated with C, C++, COM, ActiveX, CORBA, and

Java.

List of why Python is popular:• The Python framework also has modules and

packages, which facilitates code reusability.

Page | 22

Backend:-

MySQL=MySQL is an open-source relational database management system.

Its name is a combination of "My", the name of co-founder Michael

Widenius's daughter, and "SQL", the abbreviation for Structured Query

Language. MySQL is a relational database management system based on

SQL – Structured Query Language. The application is used for a wide range

of purposes, including data warehousing, e-commerce, and logging

applications. The most common use for mySQL however, is for the purpose

of a web database.

History of mysql

MySQL was created by a Swedish company, MySQL AB, founded by

Swedes David Axmark, Allan Larsson and Finland Swede Michael "Monty"

Widenius. Original development of MySQL by Widenius and Axmark

began in 1994. The first version of MySQL appeared on 23 May 1995.

Repository: github.com/mysql/mysql-server

Original author(s): MYSQL LAB

Initial release: 23 May 1995; 26 years ago

Operating system: LINUX, SOLARIES, MAC OS, Win.

MySQL is a system that helps store and manage data efficiently. Database

generally stores data in a structured fashion. It is written in C and C++, and

it has been tested with a variety of compilers to check for bugs and

inconsistencies.

Page | 23

Main features associated with MySQL

Open-Source

MySQL is open-source, which means this software can be downloaded, used

and modified by anyone. It is free-to-use and easy-to-understand. The source

code of MySQL can be studied, and changed based on the requirements. It

uses GPL, i.e. GNU General Public license which defines rules and

regulations regarding what can and can’t be done using the application.

Quick and Reliable

MySQL stores data efficiently in the memory ensuring that data is

consistent, and not redundant. Hence, data access and manipulation using

MySQL is quick.

Scalable

Scalability refers to the ability of systems to work easily with small amounts

of data, large amounts of data, clusters of machines, and so on. MySQL

server was developed to work with large databases.

Data Types

It contains multiple data types such as unsigned integers, signed integers,

float (FLOAT), double (DOUBLE), character (CHAR), variable character

(VARCHAR), text, blob, date, time, datetime, timestamp, year, and so on.

Page | 24

Character Sets

It supports different character sets, and this includes latin1 (cp1252 character

encoding), German, Ujis, other Unicode character sets and so on.

Secure

It provides a secure interface since it has a password system which is

flexible, and ensures that it is verified based on the host before accessing the

database. The password is encrypted while connecting to the server.

Support for large databases

It comes with support for large databases, which could contain about 40 to

50 million records, 150,000 to 200,000 tables and up to 5,000,000,000 rows.

Client and Utility Programs

MySQL server also comes with many client and utility programs. This

includes Command line programs such as ‘mysqladmin’ and graphical

programs such as ‘MySQL Workbench’. MySQL client programs are

written in a variety of languages. Client library (code encapsulated in a

module) can be written in C or C++ and would be available for clients that

have C bindings.

Page | 25

SOFTWARE AND HARDWARE

REQUIREMENT SPECIFICATIONS

Page | 26

Hardware

To play A Flappy Bird in Real Life you will need a minimum CPU

equivalent to an Intel Core 2 Duo Q6867. A Flappy Bird in Real Life system

requirements state that you will need at least 512 MB of RAM. The cheapest

graphics card you can play it on is an NVIDIA GeForce 7200 GS.

• 4 GB RAM and Above

 • 320 GB HARDDISK and Above

• Keyboard • Mouse

• Processor (CPU) with 2 gigahertz (GHz) frequency or Above

 • Monitor Resolution 1024 * 768 or Abov

SOFTWARE

Software can be termed as the group of instruction or command used by the

computer to accomplish the given task. In today’s world generation software

is ever ending. It is an evolution of dignified technology.

• OPERATING SYSTEM: Windows 10

• LANGUAGES (FRONT END): Python

• (BACK END): Mysql

Page | 27

DETAILED SYSTEM ANALYSIS

Page | 28

Data Flow Diagram

Page | 29

Structure of Application

 Registration Page

 Login Page

 Select Page

 Flappy Bird Platformer

Start Game score Start Game score

 Sign out

Page | 30

Data Tables

Databases play a vital role in game design and development. They store

player data, game states, information on performance, and maintain the

environments that developer teams have put so much effort into. Without a

good database, games can't function properly. Databases support good data

access because: Large volumes of data can be stored in one place. Multiple

users can read and modify the data at the same time. Databases are

searchable and sortable, so the data you need can be found quick and easily.

MYSQL is a very good tool to use due to is capability of handling lot of data

storage, most especially when you're developing an internet base football

manager game, it will be capable of holding your various team data. A

database is needed if you have multiple processes (users/servers) modifying

the data. Then the database serves to prevent them from overwriting each

others changes. You also need a database when your data is larger than

memory.

Page | 31

SYSTEM DESIGN

Page | 32

Form Design

Registration form

A signup page (also known as a registration page) enables users and

organizations to independently register and gain access to your system. It is

common to have multiple signup pages depending on the types of people

and organizations you want to register. User registration exists to make

consumers' life easier when they return to the site. However, some shoppers

may be using a site for a specific one-off purchase. Being required to sign up

for an account can also deter first-time customers.

Page | 33

Login form

A login page is a web page or an entry page to a website that requires user

identification and authentication, regularly performed by entering a

username and password combination. Logins may provide access to an

entire site or part of a website.

Page | 34

Select form

One of the easiest games of this sort is 'This or That'. This or that questions

game is an amazing conversation game where players choose between two

items they prefer.

Page | 35

Forget password form

Most websites that require a user to log in provide a link titled forgot

password or another similar phrase feature. This link allows users who have

forgotten their password to unlock, retrieve, or reset it, usually by answering

account secret questions or sending them an e-mail.

Page | 36

Source Code

Source code of registration form
from tkinter import*

from tkinter import ttk

from functools import partial

from tkinter import messagebox

from PIL import Image,ImageTk

import pymysql

root = Tk()

class register():

 def __init__(self,root):

 self.root=root

 self.root.title("Registration Window")

 self.root.geometry("1000x650+0+0")

 self.bg=ImageTk.PhotoImage(file="img/Registration/Game.png")

 bg=Label(self.root,image=self.bg).place(x=0,y=0,relheight=1,relwidth=1)

 #registration Form

 frame1=Frame(self.root,bg="black")

 frame1.place(x=260,y=65,width=500,height=550)

 title=Label(frame1,text="GAME WORLD",font=("times new

roman",27,"bold"),bg="black",fg="silver").place(x=140,y=30)

 #Logo

 self.logo=ImageTk.PhotoImage(file="img/Registration/Logo.png")

 logo=Label(frame1,image=self.logo,bg="white").place(x=20,y=5,height=100,width=120)

 #First Name

 self.txt_fname=Entry(frame1,font=("times new roman",15),bg="white")

 self.txt_fname.place(x=200,y=105,width=250)

 fname=Label(frame1,text="First Name:",font=("times new

roman",18,"bold"),bg="black",fg="white").place(x=40,y=100)

 #Last Name

 self.txt_lname=Entry(frame1,font=("times new roman",15),bg="white")

 self.txt_lname.place(x=200,y=150,width=250)

 lname=Label(frame1,text="Last Name:",font=("times new

roman",18,"bold"),bg="black",fg="white").place(x=40,y=145)

Page | 37

 #Age

 self.txt_Age=Entry(frame1,font=("times new roman",15),bg="white")

 self.txt_Age.place(x=200,y=195,width=250)

 Age=Label(frame1,text="Age:",font=("times new

roman",18,"bold"),bg="black",fg="white").place(x=40,y=190)

 #E-mail

 self.txt_Email=Entry(frame1,font=("times new roman",15),bg="white")

 self.txt_Email.place(x=200,y=240,width=250)

 Email=Label(frame1,text="Email:",font=("times new

roman",18,"bold"),bg="black",fg="white").place(x=40,y=235)

 #security Question

 self.txt_Que=ttk.Combobox(frame1,font=("times new

roman",15),state="readonly",justify=CENTER)

 self.txt_Que['values']=("Select","Your First Pet Name","Your Birth Place","Your school

name")

 self.txt_Que.place(x=247,y=288,width=200)

 Que=Label(frame1,text="Security Question:",font=("times new

roman",18,"bold"),bg="black",fg="white").place(x=40,y=285)

 self.txt_Que.current(0)

 #Answer

 self.txt_Ans=Entry(frame1,font=("times new roman",15),bg="white")

 self.txt_Ans.place(x=200,y=330,width=250)

 Ans=Label(frame1,text="Answer:",font=("times new

roman",18,"bold"),bg="black",fg="white").place(x=40,y=325)

 #Password

 self.txt_Pass=Entry(frame1,show='*',font=("times new roman",15),bg="white")

 self.txt_Pass.place(x=200,y=375,width=250)

 PASS=Label(frame1,text="Password:",font=("times new

roman",18,"bold"),bg="black",fg="white").place(x=40,y=370)

 #confirm Password

 self.txt_CP=Entry(frame1,show='*',font=("times new roman",15),bg="white")

 self.txt_CP.place(x=200,y=415,width=250)

 CP=Label(frame1,text="Confirm:",font=("times new

roman",18,"bold"),bg="black",fg="white").place(x=40,y=410)

 #checkbox TC

Page | 38

 self.var_chk=IntVar()

 chk=Checkbutton(frame1,text="I Agree the Terms &

Conditions",variable=self.var_chk,onvalue=1,offvalue=0,bg="black",fg="#1178F2",font=("times

new roman",15)).place(x=40,y=450)

 #Button

 self.btn_img=ImageTk.PhotoImage(file="img/Registration/hehe.png")

btn_reg=Button(frame1,image=self.btn_img,bd=0,cursor="hand2",command=self.register_data,b

g="black").place(x=70,y=495,height=40,width=152)

 #or

 lor=Label(frame1,text="Or",font=("times new

roman",18),bg="black",fg="white").place(x=240,y=500)

 #Sign-in button

 btn_login=Button(frame1,text="login?",font=("times new

roman",18,"bold"),bd=0,command=self.split,cursor="hand2",bg="black",fg="#1178F2").place(x

=275,y=495)

 def clear(self):

 self.txt_fname.delete(0,END)

 self.txt_lname.delete(0,END)

 self.txt_Age.delete(0,END)

 self.txt_Email.delete(0,END)

 self.txt_Ans.delete(0,END)

 self.txt_Que.delete(0,END)

 self.txt_Pass.delete(0,END)

 self.txt_CP.delete(0,END)

 def split(self):

 self.root.destroy()

 import LogIn

 def register_data(self):

 if self.txt_fname.get()=="" or self.txt_lname.get()=="" or self.txt_Email.get()=="" or

self.txt_Age.get()=="":

 messagebox.showerror("Error","All Feilds Are Required",parent=self.root)

 elif self.txt_Pass.get()!=self.txt_CP.get():

 messagebox.showerror("Error","Password & Comfirm Password should be

same",parent=self.root)

Page | 39

 elif self.var_chk.get()==0:

 messagebox.showerror("Error","Please Agree our Trems and Condition",parent=self.root)

 else:

 try:

con=pymysql.connect(host="localhost",user="root",password="",database="flappydata")

 cur=con.cursor()

 cur.execute("select * from fgdata where email=%s",self.txt_Email.get())

row=cur.fetchone()

 print(row)

 if row!=None:

 messagebox.showerror("Error","User already exist , Please try with another

email",parent=self.root)

 else:

 cur.execute("insert into fgdata(f_name,l_name,Age,email,question,answer,password)

values(%s,%s,%s,%s,%s,%s,%s)",

 (self.txt_fname.get(),

 self.txt_lname.get(),

 self.txt_Age.get(),

 self.txt_Email.get(),

 self.txt_Que.get(),

 self.txt_Ans.get(),

 self.txt_Pass.get()

))

 con.commit()

 con.close()

 self.clear()

 messagebox.showinfo("Success","Register Successful",parent=self.root)

 except Exception as es:

 messagebox.showerror("Error",f"Error due to:{str(es)}",parent=self.root)

Page | 40

obj=register(root)

root.mainloop()

 Source code of login form
from tkinter import*

from tkinter import messagebox,ttk

from PIL import Image,ImageTk

import pymysql

root = Tk()

class Login():

 def __init__(self,root):

 self.root=root

 self.root.title("LogIn")

 self.root.geometry("1000x650+0+0")

 self.bg=ImageTk.PhotoImage(file="img/Login/Game.png")

 bg=Label(self.root,image=self.bg).place(x=0,y=0,relheight=1,relwidth=1)

 #login form

 frame1=Frame(self.root,bg="black")

 frame1.place(x=180,y=150,width=620,height=400)

 title=Label(frame1,text="LOGIN",font=("times new

roman",27,"bold"),bg="black",fg="silver").place(x=270,y=90)

 #title

 self.FP=ImageTk.PhotoImage(file="img/Login/Logo.png")

 FP=Label(frame1,image=self.FP,bg="black").place(x=5,y=-15)

 title=Label(frame1,text="GAME WORLD",font=("times new

roman",27,"bold"),bg="black",fg="silver").place(x=120,y=25)

 #Username

 self.txt_Email=Entry(frame1,font=("times new roman",15),bg="white")

 self.txt_Email.place(x=250,y=160,width=250,height=30)

Page | 41

 lname=Label(frame1,text="UserName:",font=("times new

roman",22,"bold"),bg="black",fg="white").place(x=80,y=155)

 #password

 self.txt_Pass=Entry(frame1,show='*',font=("times new roman",15),bg="white")

 self.txt_Pass.place(x=250,y=220,width=250,height=30)

 lname=Label(frame1,text="Password:",font=("times new

roman",22,"bold"),bg="black",fg="white").place(x=80,y=215)

 #forget password

 forget=Button(frame1,text="Forget Password

?",bg="black",command=self.forget_passwordwindow,cursor="hand2",fg="#1178F2",bd=0,font

=("times new roman",14)).place(x=78,y=260)

 #Not a member

 title=Label(frame1,text="Not a member?",font=("times new

roman",14,),bg="black",fg="silver").place(x=175,y=350)

 signup=Button(frame1,text="Register

Here",command=self.split,bg="black",fg="#1178F2",cursor="hand2",bd=0,font=("times new

roman",14,)).place(x=292,y=348)

 #Login button

 self.btn_log=ImageTk.PhotoImage(file="img/Login/log.png")

btn_login=Button(frame1,image=self.btn_log,command=self.login,bd=0,bg="black",cursor="han

d2").place(x=300,y=280,width=140)

 def split(self):

 self.root.destroy()

 import REGISTRATION

 def jump(self):

 self.root.destroy()

 import selectthegame

 def reset(self):

 self.txt_Que.current(0)

 self.txt_newpass.delete(0,END)

 self.txt_Ans.delete(0,END)

 self.txt_Pass.delete(0,END)

 self.txt_Email.delete(0,END)

Page | 42

 def forget_password(self):

 if self.txt_Que.get()=="Select" or self.txt_Ans.get()=="" or self.txt_newpass.get()=="":

 messagebox.showerror("Error","All feilds are required",parent=self.root2)

 else:

 try:

con=pymysql.connect(host="localhost",user="root",password="",database="flappydata")

 cur=con.cursor()

 cur.execute("select * from fgdata where email=%s and question=%s and

answer=%s",(self.txt_Email.get(),self.txt_Que.get(),self.txt_Ans.get()))

 row=cur.fetchone()

 if row==None:

 messagebox.showerror("Error","Please select the Correct security Question / Enter

Answer",parent=self.root2)

 else:

 cur.execute("update fgdata set password=%s where

email=%s",(self.txt_newpass.get(),self.txt_Email.get()))

 con.commit()

 con.close()

 messagebox.showinfo("Success","Your password is updated",parent=self.root2)

 self.reset()

 self.root2.destroy()

 row=cur.fetchone()

 except Exception as es:

 messagebox.showerror("Error",f"Error Due to:{str(es)}",parent=self.root)

 def forget_passwordwindow(self):

 if self.txt_Email.get()=="":

 messagebox.showerror("Error","Please enter email address to reset your

password",parent=self.root)

 else:

 try:

Page | 43

con=pymysql.connect(host="localhost",user="root",password="",database="flappydata")

 cur=con.cursor()

 cur.execute("select * from fgdata where email=%s",(self.txt_Email.get()))

 row=cur.fetchone()

 if row==None:

 messagebox.showerror("Error","Please enter a vaild email address to reset your

password",parent=self.root)

 else:

 con.close()

 self.root2=Tk()

 self.root2.title

("Forget Password")

 self.root2.geometry("320x400+490+100")

 self.root2.config(bg="black")

 self.root2.focus_force()

 self.root2.grab_set()

 t=Label(self.root2,text="Forget Password",font=("times new

roman",20,"bold"),bg="black",fg="silver").place(x=0,y=10,relwidth=1)

 #security Question

 self.txt_Que=ttk.Combobox(self.root2,font=("times new

roman",16),state="readonly",justify=CENTER)

 self.txt_Que['values']=("Select","Your First Pet Name","Your Birth Place","Your

school name")

 self.txt_Que.place(x=25,y=125,width=250)

 Que=Label(self.root2,text="Security Question:",font=("times new

roman",18,"bold"),bg="black",fg="white").place(x=20,y=80)

 self.txt_Que.current(0)

 #Answer

 self.txt_Ans=Entry(self.root2,font=("times new roman",16),bg="white")

 self.txt_Ans.place(x=25,y=210,width=250)

 Ans=Label(self.root2,text="Answer:",font=("times new

roman",18,"bold"),bg="black",fg="white").place(x=22,y=170)

Page | 44

 #Newpassword

 self.txt_newpass=Entry(self.root2,show='*',font=("times new

roman",16),bg="white")

 self.txt_newpass.place(x=25,y=295,width=250)

 Newp=Label(self.root2,text="New Password:",font=("times new

roman",18,"bold"),bg="black",fg="white").place(x=20,y=255)

 #Resetpassword

 btn_Rpassword=Button(self.root2,text="Reset

Password",command=self.forget_password,font=("times new

roman",18,"bold"),bd=0,cursor="hand2",bg="#1E5631",fg="white").place(x=65,y=350)

except Exception as es:

 messagebox.showerror("Error",f"Error Due to:{str(es)}",parent=self.root)

 def login(self):

 if self.txt_Email.get()==""or self.txt_Pass.get()=="":

 messagebox.showerror("Error","All Field Are Required",parent=self.root)

 else:

 try:

con=pymysql.connect(host="localhost",user="root",password="",database="flappydata")

 cur=con.cursor()

 cur.execute("select * from fgdata where email=%s and

password=%s",(self.txt_Email.get(),self.txt_Pass.get()))

 row=cur.fetchone()

 print(row)

 if row==None:

 messagebox.showerror("Error","Invalid Username or Password",parent=self.root)

 else:

Page | 45

 # messagebox.showinfo("Success","Login sucessful",parent=self.root)

 self.root.destroy()

 import selectthegame

 except Exception as es:

 messagebox.showerror("Error",f"Error Due to:{str(es)}",parent=self.root)

obj=Login(root)

root.mainloop()

Source code of flappy bird game
from tkinter import *

from tkinter import messagebox

from PIL import Image,ImageTk

import pymysql

import pygame

from pygame.locals import *

import random

pygame.init()

screen_width=850

screen_height=650

clock=pygame.time.Clock()

fps=60

screen=pygame.display.set_mode((screen_width,screen_height))

pygame.display.set_caption('Flappy Bird')

#Define font

font=pygame.font.SysFont('Bauhaus 93',60)

#Define font colours

white=(255,255,255)

#game variables

ground_scroll=0

scroll_speed=4

fly=False

game_over=False

Page | 46

pipe_gap=180

pipe_freq=1500

last_pipe=pygame.time.get_ticks()-pipe_freq

score=0

pipe_pass=False

#images

bg=pygame.image.load('img/Flappybird/BG1.png')

ground_img=pygame.image.load('img/Flappybird/ground.png')

button_img=pygame.image.load('img/Flappybird/restart.png')

def draw_text(text,font,text_col,x,y):

 img=font.render(text,True,text_col)

 screen.blit(img,(x,y))

def reset_game():

 pipe_group.empty()

 flappy.rect.x=100

 flappy.rect.y=int(screen_height/2)

 score=0

 return score

class Bird(pygame.sprite.Sprite):

 def __init__(self,x,y):

 pygame.sprite.Sprite.__init__(self)

 self.images=[]

 self.index=0

 self.counter=0

 for num in range(1,4):

 img=pygame.image.load(f'img/Flappybird/bird{num}.png')

 self.images.append(img)

 self.image=self.images[self.index]

 self.rect=self.image.get_rect()

 self.rect.center=[x,y]

 self.vel=0

 self.clicked=False

Page | 47

 def update(self):

 if fly==True:

 self.vel += 0.5

 if self.vel > 8:

 self.vel = 8

 if self.rect.bottom < 530:

 self.rect.y += int(self.vel)

 if game_over==False:

 #jump

 if pygame.mouse.get_pressed()[0] == 1 and self.clicked == False:

 self.clicked = True

 self.vel = -10

 if pygame.mouse.get_pressed()[0] == 0:

 self.clicked = False

 # handle the animation

 self.counter += 1

 flap_cooldown = 5

 if self.counter > flap_cooldown:

 self.counter = 0

 self.index += 1

 if self.index >= len(self.images):

 self.index = 0

 self.image = self.images[self.index]

 # Rotate the img

 self.image = pygame.transform.rotate(self.images[self.index], self.vel * -2)

 else:

 self.image = pygame.transform.rotate(self.images[self.index], -90)

class Pipe(pygame.sprite.Sprite):

 def __init__(self,x,y,position):

 pygame.sprite.Sprite. __init__(self)

 self.image=pygame.image.load('img/Flappybird/pipe.png')

 self.rect=self.image.get_rect()

 if position ==1:

 self.image = pygame.transform.flip(self.image, False, True)

 self.rect.bottomleft = [x, y-int(pipe_gap/2)]

Page | 48

 if position==-1:

 self.rect.topleft = [x, y+int(pipe_gap/2)]

 def update(self):

 self.rect.x-=scroll_speed

 if self.rect.right<0:

 self.kill()

class Button():

 def __init__(self,x,y,image):

 self.image=image

 self.rect=self.image.get_rect()

 self.rect.topleft=(x,y)

 def draw(self):

 action=False

 #get mouse position

 pos=pygame.mouse.get_pos()

 #check mouse is over button

 if self.rect.collidepoint(pos):

 if pygame.mouse.get_pressed()[0]==1:

 action=True

 screen.blit(self.image,(self.rect.x,self.rect.y))

 return action

bird_group=pygame.sprite.Group()

pipe_group=pygame.sprite.Group()

flappy=Bird(100,int(screen_height/2))

bird_group.add(flappy)

restart button instance

button=Button(screen_width//2-50,screen_height//2-100,button_img)

run=True

while run:

 clock.tick(fps)

 screen.blit(bg,(0,-190))

Page | 49

 bird_group.draw(screen)

 bird_group.update()

 pipe_group.draw(screen)

 #Draw the ground

 screen.blit(ground_img, (ground_scroll, 530))

 #check the score

 if len(pipe_group)>0:

 if bird_group.sprites()[0].rect.left>pipe_group.sprites()[0].rect.left\

 and bird_group.sprites()[0].rect.right<pipe_group.sprites()[0].rect.right\

 and pipe_pass==False:

 pipe_pass=True

 if pipe_pass==True:

 if bird_group.sprites()[0].rect.left > pipe_group.sprites()[0].rect.right :

 score+=1

 pipe_pass=False

 draw_text(str(score),font,white,int(screen_width/2),20)

 #look for collision

 if pygame.sprite.groupcollide(bird_group,pipe_group,False,False)or flappy.rect.top<0:

 game_over=True

 #check if bird is hit the ground

 if flappy.rect.bottom>=530:

 game_over=True

 fly=False

 if game_over==False and fly==True:

 #generate pipe

 time_now=pygame.time.get_ticks()

 if time_now-last_pipe>pipe_freq:

 pipe_height= random.randint(-100,+100)

 btm_pipe = Pipe(screen_width, int(screen_height / 2)+pipe_height,-1)

 top_pipe = Pipe(screen_width, int(screen_height / 2)+pipe_height,1)

 pipe_group.add(btm_pipe)

 pipe_group.add(top_pipe)

Page | 50

 last_pipe=time_now

 ground_scroll -= scroll_speed

 if abs(ground_scroll) > 35:

 ground_scroll = 0

 pipe_group.update()

#check for game over and reset

 if game_over == True:

 if button.draw()== True:

 game_over=False

 score=reset_game()

 for event in pygame.event.get():

 if event.type==pygame.QUIT:

 run=False

 if event.type==pygame.MOUSEBUTTONDOWN and fly==False and game_over==False:

 fly=True

pygame.display.update()

pygame.quit()

Source code of select game
from tkinter import *

from tkinter import messagebox

from PIL import Image,ImageTk

import random

root=Tk()

class level():

 def __init__(self,root):

 self.root=root

 self.root.title("Select the level")

 self.root.geometry("1000x650+0+0")

 self.bg=ImageTk.PhotoImage(file="img/selectthegame/Game.png")

 bg=Label(self.root,image=self.bg).place(x=0,y=0,relheight=1,relwidth=1)

 #Logo

Page | 51

 title=Label(self.root,text="GAME WORLD",font=("times new

roman",27,"bold"),bg="black",fg="silver").place(x=390,y=1,height=100,width=320)

 self.logo=ImageTk.PhotoImage(file="img/selectthegame/Logo.png")

 logo=Label(self.root,image=self.logo,bg="white").place(x=300,y=1,height=100,width=120)

 #Flappybird

 self.flappy=ImageTk.PhotoImage(file="img/selectthegame/frontimg.png")

 flappy=Label(self.root,image=self.flappy,bg="black").place(x=80,y=280)

 btn_1=Button(text="Play Now",font=("Bauhaus

93",18,"bold"),bd=3,command=self.Game1,cursor="hand2",bg="black",fg="silver").place(x=190

,y=500)

 #Platformer

 self.Platf=ImageTk.PhotoImage(file="img/selectthegame/front.png")

 Platf=Label(self.root,image=self.Platf,bg="black").place(x=550,y=280)

 btn_2=Button(text="Play Now",font=("Bauhaus

93",18,"bold"),bd=3,command=self.Game2,cursor="hand2",bg="black",fg="silver").place(x=660

,y=500)

 #game button

 def Game1(self):

 self.root.destroy()

 import Flappybird

 def Game2(self):

 self.root.destroy()

 import Platformer

obj = level(root)

root.mainloop()

Page | 52

Source code of platformer game
import pygame

from pygame.locals import *

from pygame import mixer

import pickle

from os import path

pygame.mixer.pre_init(44100,-16,2,512)

mixer.init()

pygame.init()

clock=pygame.time.Clock()

fps=50

screen_width=990

screen_height=650

screen=pygame.display.set_mode((screen_width,screen_height))

pygame.display.set_caption('Platformer')

#define font

font=pygame.font.SysFont('Bauhaus 93',70)

font_score=pygame.font.SysFont('Bauhaus 93',30)

#Game variables

tile_size=30

game_over=0

main_menu=True

level=1

max_levels=7

score=0

#define color

white=(255,255,255)

blue=(0,0,255)

#load Background Image

bg_img=pygame.image.load('img/Platformer/sky.png')

restart_img=pygame.image.load('img/Platformer/restart_btn.png')

start_img=pygame.image.load('img/Platformer/start_btn.png')

exit_img=pygame.image.load('img/Platformer/exit_btn.png')

Page | 53

#Load sound

pygame.mixer.music.load('img/Platformer/music.wav')

pygame.mixer.music.play(-1,0.0,5000)

coin_fx=pygame.mixer.Sound('img/Platformer/coin.wav')

coin_fx.set_volume(0.5)

jump_fx=pygame.mixer.Sound('img/Platformer/jump.wav')

jump_fx.set_volume(0.5)

gameover_fx=pygame.mixer.Sound('img/Platformer/game_over.wav')

gameover_fx.set_volume(0.5)

def draw_text(text,font,text_col,x,y):

 img=font.render(text,True,text_col)

 screen.blit(img,(x,y))

def reset_level(level):

 player.reset(100,screen_height-130)

 blob_group.empty()

 lava_group.empty()

 exit_group.empty()

 if path.exists(f'img/Platformer/level{level}_data'):

 pickle_in=open(f'img/Platformer/level{level}_data','rb')

 world_data=pickle.load(pickle_in)

 world=World(world_data)

 return world

class Button:

 def __init__(self,x,y,image):

 self.image=image

 self.rect=self.image.get_rect()

 self.rect.x=x

 self.rect.y=y

 self.clicked=False

 def draw(self):

Page | 54

 action=False

 pos=pygame.mouse.get_pos()

 #hek mouseover and liked onditions

 if self.rect.collidepoint(pos):

 if pygame.mouse.get_pressed()[0]==1 and self.clicked==False:

 action=True

 self.clicked=True

 if pygame.mouse.get_pressed()[0]==0:

 self.clicked=False

 screen.blit(self.image,self.rect)

 return action

 for tile in self.tile_list:

 screen.blit(tile[0],tile[1])

class Player():

 def __init__(self,x,y):

 self.reset(x, y)

 def update(self,game_over):

 dx=0

 dy=0

 walk=4

 if game_over==0:

 #get keypresses

 key=pygame.key.get_pressed()

 if key[pygame.K_SPACE] and self.jumped==False and self.in_Air==False:

 jump_fx.play()

 self.vel_y=-14

 self.jumped=True

 if key[pygame.K_SPACE]==False:

 self.jumped=False

 if key[pygame.K_LEFT]:

 dx-=5

 self.counter+=1

 self.Directioin=-1

Page | 55

 if key[pygame.K_RIGHT]:

 dx+=5

 self.counter+=1

 self.Directioin=1

 if key[pygame.K_LEFT]==False and key[pygame.K_RIGHT]==False:

 self.counter=0

 self.index=0

 if self.Directioin==1:

 self.image=self.image_right[self.index]

 if self.Directioin==-1:

 self.image=self.image_left[self.index]

 #Animation

 if self.counter>walk:

 self.counter=0

 self.index+=1

 if self.index>=len(self.image_right):

 self.index=0

 if self.Directioin==1:

 self.image=self.image_right[self.index]

 if self.Directioin==-1:

 self.image=self.image_left[self.index]

 #add gravity

 self.vel_y+=1

 if self.vel_y>10:

 self.vel_y=10

 dy+=self.vel_y

 #check for collision

 self.in_Air=True

 for tile in world.tile_list:

 #Check for collision in x direction

 if tile[1].colliderect(self.rect.x+dx,self.rect.y,self.width,self.height):

 dx=0

Page | 56

 #check for collision in y direction

 if tile[1].colliderect(self.rect.x,self.rect.y+dy,self.width,self.height):

 #check if below the ground i.e jumping

 if self.vel_y<0:

 dy=tile[1].bottom-self.rect.top

 self.vel_y=0

 #check if above the ground i.e falling

 elif self.vel_y>=0:

 dy=tile[1].top-self.rect.bottom

 self.vel_y=0

 self.in_Air=False

 #check for collision with enemies

 if pygame.sprite.spritecollide(self,blob_group,False):

 game_over=-1

 gameover_fx.play()

 #check for collision with lava

 if pygame.sprite.spritecollide(self,lava_group,False):

 game_over=-1

 gameover_fx.play()

 #check for collision with exit

 if pygame.sprite.spritecollide(self,exit_group,False):

 game_over=1

 #update player cordinates

 self.rect.x+=dx

 self.rect.y+=dy

 elif game_over==-1:

 self.image=self.dead_image

 draw_text('GAME OVER!', font,blue,(screen_width//2)-200,screen_height//2)

 if self.rect.y>100:

 self.rect.y-=5

 #draw player on screen

 screen.blit(self.image,self.rect)

 #pygame.draw.rect(screen,(225,225,225),self.rect,2)

Page | 57

 return game_over

 def reset(self,x,y):

 self.image_right=[]

 self.image_left=[]

 self.index=0

 self.counter=0

 for num in range(1,5):

 img_right=pygame.image.load(f'img/Platformer/guy{num}.png')

 img_right=pygame.transform.scale(img_right,(30,40))

 img_left=pygame.transform.flip(img_right,True,False)

 self.image_left.append(img_left)

 self.image_right.append(img_right)

 self.dead_image=pygame.image.load('img/Platformer/ghost.png')

 self.image=self.image_right[self.index]

 self.rect=self.image.get_rect()

 self.rect.x=x

 self.rect.y=y

 self.width=self.image.get_width()

 self.height=self.image.get_height()

 self.vel_y=0

 self.jumped=False

 self.Directioin=0

 self.in_Air=True

class World():

 def __init__(self,data):

 self.tile_list=[]

 dirt_img=pygame.image.load('img/Platformer/Dirt.png')

 grass_img=pygame.image.load('img/Platformer/grass.png')

 row_count=0

 for row in data:

Page | 58

 col_count=0

 for tile in row:

 if tile ==1:

 img=pygame.transform.scale(dirt_img,(tile_size,tile_size))

 img_rect=img.get_rect()

 img_rect.x=col_count * tile_size

 img_rect.y=row_count * tile_size

 tile=(img,img_rect)

 self.tile_list.append(tile)

 if tile ==2:

 img=pygame.transform.scale(grass_img,(tile_size,tile_size))

 img_rect=img.get_rect()

 img_rect.x=col_count * tile_size

 img_rect.y=row_count * tile_size

 tile=(img,img_rect)

 self.tile_list.append(tile)

 if tile==3:

 blob=Enemy(col_count * tile_size,row_count * tile_size-5)

 blob_group.add(blob)

 if tile==4:

 platform=Platform(col_count * tile_size,row_count *tile_size)

 platform_group.add(platform)

 if tile==5:

 platform=Platform(col_count * tile_size,row_count *tile_size)

 platform_group.add(platform)

 if tile==6:

 lava=Lava(col_count*tile_size,row_count*tile_size+(tile_size//2))

 lava_group.add(lava)

 if tile==7:

 coin=Coin(col_count*tile_size+(tile_size//2),row_count*tile_size+(tile_size//2))

 coin_group.add(coin)

 if tile==8:

 exit=Exit(col_count*tile_size, row_count*tile_size-(tile_size//2))

 exit_group.add(exit)

 col_count+=1

Page | 59

 row_count+=1

 def draw(self):

 for tile in self.tile_list:

 screen.blit(tile[0],tile[1])

 #pygame.draw.rect(screen,(225,225,225),tile[1],2)

class Enemy(pygame.sprite.Sprite):

 def __init__(self,x,y):

 pygame.sprite.Sprite.__init__(self)

 self.image=pygame.image.load('img/Platformer/blob.png')

 self.rect=self.image.get_rect()

 self.rect.x=x

 self.rect.y=y

 self.move_direction=1

 self.move_counter=0

 #move the blob left and right

 def update(self):

 self.rect.x+=self.move_direction

 self.move_counter+=1

 if self.move_counter>50:

 self.move_direction*=-1

 self.move_counter*=-1

class Platform(pygame.sprite.Sprite):

 def __init__(self,x,y):

 pygame.sprite.Sprite.__init__(self)

 img=pygame.image.load('img/Platformer/platform.png')

 self.image=pygame.transform.scale(img,(tile_size,tile_size//2))

 self.rect=self.image.get_rect()

 self.rect.x=x

 self.rect.y=y

class Lava(pygame.sprite.Sprite):

 def __init__(self,x,y):

 pygame.sprite.Sprite.__init__(self)

 img=pygame.image.load('img/Platformer/lava.png')

Page | 60

 self.image=pygame.transform.scale(img,(tile_size,tile_size//2))

 self.rect=self.image.get_rect()

 self.rect.x=x

 self.rect.y=y

class Coin(pygame.sprite.Sprite):

 def __init__(self,x,y):

 pygame.sprite.Sprite.__init__(self)

 img=pygame.image.load('img/Platformer/coin.png')

 self.image=pygame.transform.scale(img,(tile_size//2,tile_size//2))

 self.rect=self.image.get_rect()

 self.rect.center=(x,y)

class Exit(pygame.sprite.Sprite):

 def __init__(self,x,y):

 pygame.sprite.Sprite.__init__(self)

 img=pygame.image.load('img/Platformer/exit.png')

 self.image=pygame.transform.scale(img,(tile_size,int(tile_size * 1.5)))

 self.rect=self.image.get_rect()

 self.rect.x=x

 self.rect.y=y

player=Player(100,screen_height-130)

blob_group=pygame.sprite.Group()

platform_group=pygame.sprite.Group()

lava_group=pygame.sprite.Group()

coin_group=pygame.sprite.Group()

exit_group=pygame.sprite.Group()

#DUMMY COIN

score_coin=Coin(tile_size//2,tile_size//2)

coin_group.add(score_coin)

#loading world data and creating it

if path.exists(f'img/Platformer/level{level}_data'):

 pickle_in=open(f'img/Platformer/level{level}_data','rb')

 world_data=pickle.load(pickle_in)

world=World(world_data)

Page | 61

#buttons

restart_button=Button(screen_width//2-50,screen_height//2+100,restart_img)

start_button=Button(screen_width//2-350,screen_height//2,start_img)

exit_button=Button(screen_width//2+150,screen_height//2,exit_img)

#def draw_grid():

 # for line in range(0,34):

 # pygame.draw.line(screen,(255,255,255),(0,line*tile_size),(screen_width,line*tile_size))

 # pygame.draw.line(screen,(255,255,255),(line*tile_size,0),(line*tile_size,screen_height))

run=True

while run:

 clock.tick(fps)

 screen.blit(bg_img,(0,0))

 #screen.blit(sun_img,(100,100))

 #draw_grid()

 if main_menu==True:

 if exit_button.draw():

 run=False

 if start_button.draw():

 main_menu=False

 else:

 world.draw()

 #draw_grid()

 if game_over==0:

 blob_group.update()

 #update score

 if pygame.sprite.spritecollide(player,coin_group,True):

 score+=1

 coin_fx.play()

 draw_text('X '+str(score),font_score,white,tile_size-5,0)

 blob_group.draw(screen)

 platform_group.draw(screen)

Page | 62

 lava_group.draw(screen)

 coin_group.draw(screen)

 exit_group.draw(screen)

 game_over=player.update(game_over)

 #if player has died

 if game_over==-1:

 if

restart_button.draw():

 world_data=[]

 world=reset_level(level)

 game_over=0

 score=0

 #if player is won

 if game_over==1:

 #load the next level

 level+=1

 if level<=max_levels:

 #reset level

 world_data=[]

 world=reset_level(level)

 game_over=0

 else:

 draw_text('YOU WIN!',font,blue,(screen_width//2)-140,screen_height//2)

 if restart_button.draw():

 level=1

 world_data=[]

 world=reset_level(level)

 game_over=0

 score=0

 for event in pygame.event.get():

 if event.type==pygame.QUIT:

 run=False

Page | 63

 pygame.display.update()

pygame.quit()

Source code of Level editor
import pygame

import pickle

from os import path

pygame.init()

clock = pygame.time.Clock()

fps = 60

#game window

tile_size = 30

cols = 34

margin = 0

screen_width = tile_size * cols

screen_height = 700#(tile_size * cols) + margin

screen = pygame.display.set_mode((screen_width, screen_height))

pygame.display.set_caption('Level Editor')

#load images

bg_img = pygame.image.load('img/Platformer/sky.png')

bg_img = pygame.transform.scale(bg_img, (screen_width, screen_height - margin))

dirt_img = pygame.image.load('img/Platformer/dirt.png')

grass_img = pygame.image.load('img/Platformer/grass.png')

blob_img = pygame.image.load('img/Platformer/blob.png')

platform_x_img = pygame.image.load('img/Platformer/platform_x.png')

platform_y_img = pygame.image.load('img/Platformer/platform_y.png')

Page | 64

lava_img = pygame.image.load('img/Platformer/lava.png')

coin_img = pygame.image.load('img/Platformer/coin.png')

exit_img = pygame.image.load('img/Platformer/exit.png')

save_img = pygame.image.load('img/Platformer/save_btn.png')

load_img = pygame.image.load('img/Platformer/load_btn.png')

#define game variables

clicked = False

level = 1

#define colours

white = (255, 255, 255)

green = (144, 201, 120)

font = pygame.font.SysFont('Futura', 24)

#create empty tile list

world_data = []

for row in range(34):

 r = [0] * 34

 world_data.append(r)

#create boundary

for tile in range(0, 34):

 world_data[21][tile] =1

 world_data[0][tile] = 1

 world_data[tile][0] = 1

 world_data[tile][32] = 1

#function for outputting text onto the screen

def draw_text(text, font, text_col, x, y):

 img = font.render(text, True, text_col)

 screen.blit(img, (x, y))

def draw_grid():

Page | 65

 for c in range(35):

 #vertical lines

 pygame.draw.line(screen, white, (c * tile_size, 0), (c * tile_size, screen_height - margin))

 #horizontal lines

 pygame.draw.line(screen, white, (0, c * tile_size), (screen_width, c * tile_size))

def draw_world():

 for row in range(34):

 for col in range(34):

 if world_data[row][col] > 0:

 if world_data[row][col] == 1:

 #dirt blocks

 img = pygame.transform.scale(dirt_img, (tile_size, tile_size))

 screen.blit(img, (col * tile_size, row * tile_size))

 if world_data[row][col] == 2:

 #grass blocks

 img = pygame.transform.scale(grass_img, (tile_size, tile_size))

 screen.blit(img, (col * tile_size, row * tile_size))

 if world_data[row][col] == 3:

 #enemy blocks

 img = pygame.transform.scale(blob_img, (tile_size, int(tile_size * 0.75)))

 screen.blit(img, (col * tile_size, row * tile_size + (tile_size * 0.25)))

 if world_data[row][col] == 4:

 #horizontally moving platform

 img = pygame.transform.scale(platform_x_img, (tile_size, tile_size // 2))

 screen.blit(img, (col * tile_size, row * tile_size))

 if world_data[row][col] == 5:

 #vertically moving platform

 img = pygame.transform.scale(platform_y_img, (tile_size, tile_size // 2))

 screen.blit(img, (col * tile_size, row * tile_size))

 if world_data[row][col] == 6:

 #lava

 img = pygame.transform.scale(lava_img, (tile_size, tile_size // 2))

 screen.blit(img, (col * tile_size, row * tile_size + (tile_size // 2)))

 if world_data[row][col] == 7:

Page | 66

 #coin

 img = pygame.transform.scale(coin_img, (tile_size // 2, tile_size // 2))

 screen.blit(img, (col * tile_size + (tile_size // 4), row * tile_size + (tile_size // 4)))

 if world_data[row][col] == 8:

 #exit

 img = pygame.transform.scale(exit_img, (tile_size, int(tile_size * 1.5)))

 screen.blit(img, (col * tile_size, row * tile_size - (tile_size // 2)))

class Button():

 def __init__(self, x, y, image):

 self.image = image

 self.rect = self.image.get_rect()

 self.rect.topleft = (x, y)

 self.clicked = False

 def draw(self):

 action = False

 #get mouse position

 pos = pygame.mouse.get_pos()

 #check mouseover and clicked conditions

 if self.rect.collidepoint(pos):

 if pygame.mouse.get_pressed()[0] == 1 and self.clicked == False:

 action = True

 self.clicked = True

 if pygame.mouse.get_pressed()[0] == 0:

 self.clicked = False

 #draw button

 screen.blit(self.image, (self.rect.x, self.rect.y))

 return action

Page | 67

#create load and save buttons

save_button = Button(screen_width // 2 - 150, screen_height - 50, save_img)

load_button = Button(screen_width // 2 + 150, screen_height - 50, load_img)

#main game loop

run = True

while run:

 clock.tick(fps)

 #draw background

 screen.fill(green)

 screen.blit(bg_img, (0, 0))

 #screen.blit(sun_img, (tile_size * 2, tile_size * 2))

 #load and save level

 if save_button.draw():

 #save level data

 pickle_out = open(f'img/Platformer/level{level}_data', 'wb')

 pickle.dump(world_data, pickle_out)

 pickle_out.close()

 if load_button.draw():

 #load in level data

 if path.exists(f'img/Platformer/level{level}_data'):

 pickle_in = open(f'img/Platformer/level{level}_data', 'rb')

 world_data = pickle.load(pickle_in)

 #show the grid and draw the level tiles

 draw_grid()

 draw_world()

 #text showing current level

 draw_text(f'img/Platformer/Level: {level}', font, white, tile_size, screen_height - 60)

 draw_text('Press UP or DOWN to change level', font, white, tile_size, screen_height - 40)

 #event handler

Page | 68

 for event in pygame.event.get():

 #quit game

 if event.type == pygame.QUIT:

 run = False

 #mouseclicks to change tiles

 if event.type == pygame.MOUSEBUTTONDOWN and clicked == False:

 clicked = True

 pos = pygame.mouse.get_pos()

 x = pos[0] // tile_size

 y = pos[1] // tile_size

 #check that the coordinates are within the tile area

 if x < 33 and y < 34:

 #update tile value

 if pygame.mouse.get_pressed()[0] == 1:

 world_data[y][x] += 1

 if world_data[y][x] > 8:

 world_data[y][x] = 0

 elif pygame.mouse.get_pressed()[2] == 1:

 world_data[y][x] -= 1

 if world_data[y][x] < 0:

 world_data[y][x] = 8

 if event.type == pygame.MOUSEBUTTONUP:

 clicked = False

 #up and down key presses to change level number

 if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_UP:

 level += 1

 elif event.key == pygame.K_DOWN and level > 1:

 level -= 1

 #update game display window

 pygame.display.update()

pygame.quit()

Page | 69

Input And Output Screen

Input screen

Output screen

Page | 70

Input screen

Output screen

Page | 71

Input screen

Output screen

Page | 72

Input screen

Output screen

Page | 73

TESTING AND VALIDATION

Page | 74

TESTING

Testing plays important role to identify the quality of any software. Testing

actually refers to detecting errors in the system. Before testing can begin, a

test plan needs to be developed. Test plan actually includes the type of

testing that has to be performed on the code, resources for testing, how the

software will be tested. There are several types of testing during the test

phase, that includes quality assurance testing (QAT), System Integration

testing (SIT), and user acceptance testing (UAT).

• Quality Assurance (QA) Testing: In this the procedures and processes are

checked. This means whether the instructions are executed as per the user

requirements and commands.

• System Integration Testing (UAT): It verifies proper execution of software

components and proper interfacing between components within the solution.

the objective behind this testing is to validate that all software module

dependencies are functionally correct and that data integrity is maintained

between separate modules for the entire solution.

• User Acceptance Testing (UAT): This is the last phase of the software

testing procedure. During UAT, actual software users test the software to

make sure it can handle required tasks in real-world scenarios, according to

specifications. UAT is one of the final and critical software project

procedures that must occur before newly developed software is rolled out to

actual use. Before testing the system, we need to consider following

questions in our mind:

Page | 75

• What is the actual problem?

 • How critical the problem is?

 • Measures should be taken for the upcoming problems or errors?

 Testing gives chance to upgrade or to improve if any drawbacks prevail in

the application.

Testing is generally done at two levels,

testing of individual modules and testing entire system.

During system testing, the system is used experimentally to ensure that the

software does not fall. that it will run according to its specification and in the

way users expect. Testing is done throughout system development at various

stages.

Following are the type of testing done in the project:

1. Program Testing: In this, we have to concentrate on the software part,

system software should be free from errors. whether it is syntax error or

logical error. In this system, we have done software testing and the output of

this test is satisfactory. It fulfills all the conditions, which was required for

the program testing.

2. Stress Testing: this test is conducted to check the performance of the

system in main hours. It finds out how much workload the system can bear.

In stress testing of this system, we come to know that this software can work

easily and accurately at any condition. The concentration is made on the

Page | 76

performance of the system by checking the giving input and their expected

outputs.

3. Documentation Testing: this testing work to find out that whatever

document supplied is satisfactory or there is a need to supply further

document. In this system, all the documents which are supplied are

satisfactory

Different types of Testing

1) Unit Testing

Unit testing is a type of software testing which is done on an individual unit

or

component to test its corrections. Typically, Unit testing is done by the

developer at

the application development phase. Each unit in unit testing can be viewed

as a

method, function, procedure, or object. Developers often use test automation

tools

such as Unknit, Unit, JUnit for the test execution.

Unit testing is important because we can find more defects at the unit test

level.

For example, there is a simple calculator application. The developer can

write the

unit test to check if the user can enter two numbers and get the correct sum

for

Page | 77

addition functionality.

a) White Box Testing

White box testing is a test technique in which the internal structure or code

of an

application is visible and accessible to the tester. In this technique, it is easy

to find

loopholes in the design of an application or fault in business logic. Statement

coverage and decision coverage/branch coverage are examples of white box

test

techniques.

b) Gorilla Testing

Gorilla testing is a test technique in which the tester and/or developer test the

module

of the application thoroughly in all aspects. Gorilla testing is done to check

how

robust your application is.

2) Integration Testing

Integration testing is a type of software testing where two or more modules

of an

application is logically grouped together and tested as a whole. The focus of

this

type of testing is to find the defect on interface, communication, and data

flow

Page | 78

among modules. Top-down or Bottom-up approach is used while integrating

modules into the whole system.

This type of testing is done on integrating modules of a system or between

systems. For example, a user is buying a flight ticket from any airline

website.

Users can see flight details and payment information while buying a ticket,

but flight

details and payment processing are two different systems. Integration testing

should

be done while integrating of airline website and payment processing system.

a) gray box testing

As the name suggests, gray box testing is a combination of white-box testing

and

black-box testing. Testers have partial knowledge of the internal structure or

code of

an application.

3) System Testing

System testing is types of testing where tester evaluates the whole system

against

the specified requirements.

a) End to End Testing

Page | 79

It involves testing a complete application environment in a situation that

mimics

real-world use, such as interacting with a database, using network

communications,

or interacting with other hardware, applications, or systems if appropriate.

For example, a tester is testing a pet insurance website. End to End testing

involves

testing of buying an insurance policy, LPM, tag, adding another pet,

updating credit

card information on users’ accounts, updating user address information,

receiving

order confirmation emails and policy documents.

b) Black Box Testing

Blackbox testing is a software testing technique in which testing is

performed

without knowing the internal structure, design, or code of a system under

test.

Testers should focus only on the input and output of test objects.

Detailed information about the advantages, disadvantages, and types of

Black Box

testing can be found here.

c) Smoke Testing Smoke testing is performed to verify that basic and critical

functionality of the system under test is working fine at a very high level.

4) Acceptance Testing

Page | 80

Acceptance testing is a type of testing were client/business/customer test the

software with real time business scenarios.

The client accepts the software only when all the features and functionalities

work

as expected, this is the last phase of testing, after which the software goes

into

production. This is also called User Acceptance Testing (UAT).

a) Alpha Testing

Alpha testing is a type of acceptance testing performed by the team in an

organization to find as many defects as possible before releasing software to

customers.

b) Beta Testing

Beta Testing is a type of software testing which is carried out by the

clients/customers. It is performed in the Real Environment before releasing

the

product to the market for the actual end-users.

Beta Testing is carried out to ensure that there are no major failures in the

software

or product, and it satisfies the business requirements from an end-user

perspective.

Beta Testing is successful when the customer accepts the software.

Page | 81

Non-Functional Testing

There are four main types of functional testing.

1) Security Testing

It is a type of testing performed by a special team. Any hacking method can

penetrate

the system.

Security Testing is done to check how the software, application, or website

is secure

from internal and/or external threats. This testing includes how much

software is

secure from malicious programs, viruses and how secure & strong the

authorization

and authentication processes are.

2) Performance Testing

Performance testing is testing of an application’s stability and response time

by

applying load.

The word stability means the ability of the application to withstand in the

presence

of load. Response time is how quickly an application is available to users.

Performance testing is done with the help of tools. Loader.IO, JMeter,

LoadRunner,

Page | 82

etc. are good tools available in the market.

3) Usability Testing

Usability testing is testing an application from the user’s perspective to

check the

look and feel and user-friendliness.

For example, there is a mobile app for stock trading, and a tester is

performing

usability testing. Testers can check the scenario like if the mobile app is easy

to

operate with one hand or not, scroll bar should be vertical, background color

of the

app should be black and price of and stock is displayed in red or green color.

4) Compatibility testing

This is a testing type in which it validates how software behaves and runs in

a

different environment, web servers, hardware, and network environment.

Compatibility testing ensures that software can run on different

configuration,

different databases, different browsers, and their versions. The testing team

performs

compatibility testing.

Page | 83

Other Types of Testing

Back-end Testing

Whenever an input or data is entered on the front-end application, it is stored

in the

database and the testing of such database is known as Database Testing or

Backend

Testing.

There are different databases like SQL Server, MySQL, Oracle, etc.

Database

Testing involves testing of table structure, schema, stored procedure, data

structure,

and so on. In Back-end Testing, GUI is not involved, the testers are directly

connected to the database with proper access and testers can easily verify

data by

running a few queries on the database.

Black Box Testing

Internal system design is not considered in this type of testing. Tests are

based on

the requirements and functionality.

Detailed information about the advantages, disadvantages, and types of

Black Box

Page | 84

testing can be found here.

Browser Compatibility Testing

This is a sub-type of Compatibility Testing (which is explained below) and

is

performed by the testing team.

Browser Compatibility Testing is performed for web applications and

ensures that

the software can run with a combination of different browsers and operating

systems.

This type of testing also validates whether a web application runs on all

versions of

all browsers or not.

Backward Compatibility Testing

It is a type of testing that validates whether the newly developed software or

updated

software works well with the older version of the environment or not.

Backward Compatibility Testing checks whether the new version of the

software

works properly with the file format created by an older version of the

software. It

Page | 85

also works well with data tables, data files, and data structures created by the

older

version of that software. If any of the software is updated, then it should

work well

on top of the previous version of that software.

VALIDATION CHECKS

Data validation is the process of ensuring, at least as far as is possible, that

the data given to a program by a user or from a file (essentially, the system’s

input) is of the correct type, and in the correct format.

There are however measures that can be taken to restrict the program’s input

to valid data. such measures involve the application of validation rules to

any data being input to the program. In this system, Data validation rules can

also make this system more user friendly, since they enable the program to

warn the user immediately when there is a problem rather than simply

allowing them to continue entering data until the program crashes or some

other problem occurs.

In this proposed system, we have introduced the following data validation

rules:

 1. Value entered check: this is used for things like required fields in online

forums where the user must enter some data (for example their username

and password) and must not leave the field blank.

Page | 86

2. Permitted character check: it is useful for determining whether an input

string contains valid characters. For example, a phone number may include

the digits 0- 9.

3. Limit check: It is used for numeric values that must either be greater than

or equal to some lower limit, or less than or equal to some upper limit. For

example, the limited number that a user can enter as a phone number is 10.

4. Confirmation check: At the time of creating an account in this system, it is

used for determining whether the enter password and confirm password are

same or not.

 5. Email address check: At the time of creating an account, the system can

only accept a valid email id. For example, “@gmail.com”

Page | 87

SYSTEM AND SECURITIES

MEASURES

Page | 88

SYSTEM SECURITY MAJORS

The objective of system security is the protection of information and

property from theft, corruption and other types of damage, while allowing

the information and property to remain accessible and productive. System

security includes the development and implementation of security

countermeasures. There are a number of different approaches to system

security.

In this proposed system, we have provided the following security majors:

 1. Password: the most widely method to prevent unauthorized access is to

use passwords. The password needs to be kept secret and is only intended

for the specific user. In this system, each password is associated with a

specific username since many individuals may be accessing the same

system.

2. Accessibility: In the game, with the help of admin username and

password, only the admin has the right to update the game such as add,

delete and update the products.

Page | 89

IMPLEMENTATION

EVALUATION AND

MAINTENANCE

Page | 90

IMPLEMENTATION

Implementation refers to that stage of project during which the theory is

turned into practice i.e., converting soft ideas into actual process. In this

stage physical system specifications are converted into working and reliable

solution. This is where the system is developed. It is followed by testing and

then again implementation.

Implementation phases: • Coding: this includes implementation of the design

document into executable programming language code. The output of the

coding phase is the source code for the software that acts as input to the

testing and maintenance phase.

• Integration and Testing: It includes detection of errors in the software. The

testing process starts with a test plan recognizes test-related activities, such

as test case generation, testing criteria and resource allocation of testing. The

code is tested and mapped against the design document created in the design

phase.

• Installation: New system is installed and rolled out.

The steps involved in this phase are:

1. Acquisition and installation of hardware and software.

2. Conversion: It actually means to convert the old data to new format for

proper functioning of the application in the new system.

Page | 91

3. User Training: User in this case has to be trained to use the system

properly so that it is easy for them to grab control over the use of the

application.

4. Documentation: This provides details of how to operate the given

software, application and website.

The hardware and relevant software required for running the application

must be installed and fully checked before implementation. In this phase

conversion plays a crucial role. It actually means to convert the old data to a

new format for proper functioning of the application in the new system.

During the phase all the required programs are loaded onto user’s computer.

User must be trained.

The documentation is a complete description of the system from the user’s

point of view as it provides details of how to operate the given software and

application. It also includes certain error messages that a user is expected to

encounter during its usage and solution to the expected problems. It involves

detained and step by step information of the project development so as to

modify or update as per the new user requirements.

Page | 92

EVALUATION

Evaluation phase is the next to the implementation and it evaluates whether

or not the system has met its requirements by comparing with the standards

that were set before its actual development. The evaluation process includes

the study of the current system and their drawbacks (if any) and various

alternatives to improve and solve those prevailing problems. Evaluation is

done by keeping the preliminary requirements of the user in mind.

 Evaluation is included as a part of the final phase, but practically, evaluation

takes place during each and every phase. The concentration should be on the

satisfying the primary requirement of the users. The system is evaluated on

the basis of following points:

 • System Availability: whether the required system is available or not. •

Compatibility: whether the application is compatible with the system or not.

• Cost: whether the developed application is affordable and has low

maintenance cost. • Performance: it basically checks the efficiency of the

application. Efficiency in handling the rush and fired queries simultaneously.

It evaluates whether the application generates result at same speed when

load is given to it as when it is stress free.

• Usability: whether the developed application is easily accessible and user-

friendly. Evaluation in this system is done as follows:

• The errors generated in the code due to compatibility issues are debugged.

• Ease of installation and training.

Page | 93

 • Adequacy and cost of hardware maintenance.

• Performance and its efficiency to handle the stress.

 • Low maintenance cost. In this proposed system, evaluation is made on

existing system, what are their drawbacks what improvement can be made to

provide facility to users. Collecting the information required for

improvement in the project and then implementing it in real use

MAINTENANCE

Maintenance is the final stage after the development process. After the

system is installed, it must be maintained means that the computer programs

must be modified and kept up to date. The average amount of time spent on

maintenance is 60% of the total time. Estimates of the time spent by

departments on maintenance have ranged from 48 to 60 percent of the total

time spent developing systems. As the number of programs written

increases, so does the amount of maintenance they require.

 Maintenance covers a wide range of activities including correcting, coding,

designing errors and updating user support. the project needs maintenance in

further if any enhancements are made, maintenance of the hardware and

software is also required.

The maintenance phase occurs once the system is operational. It includes

implementation of changes that software might undergo over a period of

time, or implementation of new requirements after the software is deployed

Page | 94

at the customer location. The maintenance phase also includes handling the

residual errors that may exist in the software even the testing phase.

 The maintenance phase also monitors system performance, rectifies bugs

and requested changes are made.

Maintenance is performed for two reasons:

• First is to correct software errors. no matter how thoroughly the system is

tested, bugs or errors creep into the computer programs. Bugs in commercial

PC software are often documented as “known anomalies’’ and are corrected

when new versions of the software are released or in an interim release. In

custom software (also called bespoke software), bugs must be corrected as

they are detected.

• Second, for performing system maintenance is to enhance the software’s

capabilities in response to changing organizational needs, generally

involving one of the following three situations:

1. Users often request additional features after they become familiar with the

computer system and its capabilities.

3. Hardware and software are changing at an accelerated pace. In summary,

Maintenance is an ongoing process over the life cycle of a system. After the

application is installed, maintenance usually takes the form of correcting

previously undetected program errors. Once these are corrected, the system

approaches a steady state, providing dependable service to its users.

Page | 95

FUTURE SCOPE OF PROJECT

Page | 96

• Extra Features: Success of this application provides the extra ordinary

features to the user.

• Simple and Easy: This project procedure is user-friendly, easy, simple and

error free, it makes the software attractive.

• Reliability: This application can be run or expected into the current

operating software’s also.

 . platform: Flappy bird game and platformer game will arcade- style in

game platform.

. Use: The game use as an environment for Neuroevolutionary algorithms

tests is an excellent study.

. Vision: The vision of the project, in terms of understanding scope, requires

detailed foresight about what they will be its scope, requires of hours of

gameplay, graphics quality, number of players supported, number of levels,

quality of the AL, and other aspects that would be thought out fully in a

game design document.

Page | 97

CONCLUSION

Page | 98

• Premium Quality: The main motive behind developing this project is to

provide good quality software.

• Fulfilment of User Satisfaction: The basic concern behind developing this

software is to provide good quality of game and provide high level of

satisfaction to the user.

• Refreshing and Enhances Mind Power: This project is made basically to

refresh the mind of people as well as it also enhances the concentration

power of the user.

• when games are played in moderation and with mindfulness, they are a

viable source of stress relief as well as a catalyst for mental health

improvement and development of social skills.

▪ We have created this application using python language which is very

popular.

▪ Our application also has many pros and cons which will be improved as

per

the user’s preferences.

Page | 99

BIBLIOGRAPHY

Page | 100

References: -

 1) http://www.tutorialspoint.com/

2) https://www.seleniumhq.org/download/

3) www.Google.co.in

4) YouTube

5) Python Programming Book

http://www.tutorialspoint.com/
https://www.seleniumhq.org/download/
http://www.google.co.in/

Page | 101

APPROVED COPY OF SYNOPSIS

Page | 102

A
PROJECT SYNOPSIS

ON

Flappy Bird Game and Platformer

G. S. COLLEGE OF COMMERCE & ECONOMICS, NAGPUR

AUTONOMOUS

In the Partial Fulfillment of

B.Com. (Computer Application) Final Year

Submitted by

Chandan Sharma

 Sanket Malve

 Under the Guidance of

Pravin J. Yadao

G. S. COLLEGE OF COMMERCE & ECONOMICS, NAGPUR

AUTONOMOUS

2021-2022

Page | 103

1. Introduction:

Flappy Game introduction

Flappy bird rose to popularity as an easy to play and addictive game at

the end of 2013 It is a game where the user must navigate the bird

through a series of pipes. It is stated that the creator (Dong Nguyen)

made the game in 3 days, and has made up to $50,000 a day from

advertising in the game. He is also sad that the game’s popularity has

taken over his otherwise “simple” life Now it is your chance to see how

easy it is to construct a game like this

Platformer game introduction

A platformer, or platform video game, is one that traditionally

features two-dimensional graphics in which players control

characters who jump or climb between different platforms on

the screen. It's a subgenre of the Action category, which is one

of the many different types of video games.

Page | 104

2.Objective of Flappy bird game project

1: -Apply previous skill to put together basis blocks within scratch to

create an app style game

2: -Extend knowledge about variables and how you can affect the

difficulty within a game

3: -A simple game: one input (press any button or shake), one character

to move up and down, and a series of obstacles that enter from the right

and move across the screen and leave on the left.

4: -Some complications can be thrown in: the obstacles are random in

size and structure, and the speed at which they move can increase over

time.

Objective of platformer game project

1: - A platform game (often simplified as platformer or jump 'n' run

games) is a video game genre and subgenre of action games in which the

core objective is to move the player character between points in a

rendered environment.

2: -Develop a data-driven cross platform game engine supporting

 Desktop

 XBOX One

 Android

3: - Develop a game using the engine and produce playable builds for all

supported platforms

Page | 105

3. Project Category: GAME

4. Tools/ Platform/ Languages to be used: Python

5. Scope of future application:

1: - We Will increase more level

2: - We will create new features in this project.

3: - The game use as an environment for Neuroevolutionary algorithms

tests is an excellent study.

4: - Flappy bird game environment will using a minimal strategy that in

addition to finding a simple agent to play the game and finds its quickly.

5: - The both games will popular in the world.

6: - flappy bird game and platformer game will arcade-style game in

game platform.

Submitted by,

Name and Signature of the student

 1: - Sanket Malve

 2: - Chandan Sharma

 Approved by,

 Prof. Pravin Yadao

 Project Guide

